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T
he crystallographic restriction, as it

applies to patterns in the plane, tells

us that a pattern invariant under two

linearly independent isometries can-

not have 5-fold symmetry. And yet the

pattern in Figure 1 seems to have translational

symmetry in two directions as well as rotational

symmetry through 72◦. To see what I mean, start

with the wheel shape at the point labeled A and

notice translational symmetries along vectors
------------------------------→
AB

and
------------------------------------→
AC; then rotate the image 72◦ aboutA, so that

B goes to C, and see that the image is unchanged,

apparently in violation of the crystallographic

restriction. How can this be?

A moment’s thought can break the illusion: If

the pattern really enjoyed translational symmetry

along vector
------------------------------→
AB, then we could rotate 72◦ clock-

wise about B and move A to C. Alas, angle ∠ABC
is an unfortunate 54◦, so B is not truly a translate

of A.

The purpose of this paper is to show that

an effort to construct functions known not to

exist may on occasion produce interesting frauds.

Our method produces a family of Harald Bohr’s

quasiperiodic functions, which may well remind

readers of the quasicrystals that have been much

in the news since Daniel Shechtman won the Nobel

Prize in Chemistry in 2011 [1].

The term quasicrystal has an interesting his-

tory, as explained by Senechal in the Notices [6].

Diffraction patterns found by Shechtman in 1982
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Figure 1. Wallpaper with 555-fold symmetry?

displayed 5-fold symmetry and so fell outside the

mathematical categories commonly accepted as

encompassing all possible crystalline structures.

Our quasiperiodic functions are a different sort

of object altogether. Unlike the structures studied

by crystallographers, which are idealized as sets

of isolated points in space, these are smooth func-

tions that have honest 5-fold symmetry about a

single point and come so close to having transla-

tional symmetry that they can easily fool the eye,

provided we select a suitable translation.

The techniques developed to create these func-

tions may offer more interest beyond creating

fraudulent images such as Figure 1. We show how
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to construct functions with 3-fold symmetry and

how the technique breaks down when we try to

change 3 to 5.

Preliminaries

By wallpaper group we mean a group G of

Euclidean isometries of the real plane whose

translational subgroup is a lattice generated by

two linearly independent translations. As is well

known, there are seventeen isomorphism classes

of such groups. Also well known is the fact that

if ρ is a rotation in one of these groups, then its

order is 2, 3, 4, or 6.

Unlike many discussions of patterns in the

plane which refer to subsets, called motifs, being

repeated without overlap [4, p. 204], we use anal-

ysis to develop the concept of pattern. For us, a

pattern is given by a wallpaper function, which is

a real- (or perhaps complex-) valued function on

the real plane that is invariant under the action

of one of the wallpaper groups [2]. In symbols, we

require that

f (gx) = f (x) for every x ∈ R2, g ∈ G.

For any given group G, it is easy to con-

struct such functions by superimposing plane

waves invariant with respect to the lattice of

translations in the group. My paper “Wallpaper

functions” [2] explains the construction and also

covers functions with color-reversing symmetries.

For wallpaper functions with 3-fold symmetry, an

alternate method is possible, one that readers fa-

miliar with group representations may recognize.

We present this method and try to generalize it

to produce functions with 5-fold symmetry. In the

generalization, we can see exactly why Figure 1

fails to enjoy honest translational symmetry.

Constructing Patterns with 3-fold Symmetry

To construct functions on the plane with 3-fold

symmetry, we start with an unlikely object: cyclic

permutation of three variables, considered as

a linear transformation of R
3. After all, this

permutation, which we will call P , does have

order 3. If f is any function of three variables,

then f (x, y, z)+ f (z, x, y)+ f (y, z, x) is a function

invariant under P .

Since we seek periodic functions, let us suppose

that the function f (x, y, z) is periodic with respect

to the integer lattice in R3. Let us limit ourselves

to constructing continuously differentiable func-

tions. Then we may assume that f is represented

as the sum of its Fourier series in three variables:

f (x, y, z) =
∑

n∈Z3

ane
2πin·x.

For 3-fold symmetry, we may either take such

an f and average it over cyclic permutation of

variables or require that

an = anP = anP2 ,

since these coefficients will become equal after

averaging. (Here, we think of the matrix P as

acting on row vectors n, the adjoint action.)

It remains to find planar functions somewhere

in this 3-dimensional setup. The eigenspaces of

the linear transformation P are easily found to be

the line generated by [1,1,1] and a plane Π, with

basis V1 = [1,−1,0] and V2 = [0,1,−1], on which

P acts as rotation through an angle 2π/3.

If we restrict f to the plane Π, the resulting

function has translational invariance with respect

to the integer vectors V1 and V2, as well as

rotational symmetry through an angle of 2π/3.

Of course, f is necessarily invariant with respect

to all compositions of these symmetries and so

is a wallpaper function with group at least as

large as the one generated by the rotation and one

translation. (Translation along V2 can be written by

conjugating the other translation by the rotation.)

We call this group p3, preferring the notation

of the International Union of Crystallography to

Conway’s orbifold notation.

We can easily construct wallpaper functions

with groups that contain p3 as a subgroup by

including special groupings of terms in the Fourier

expansion of the function of three variables before

we restrict. To explain this in some detail, we begin

with packets of waves invariant under 3-fold

rotation:

Wn(x) =
1

3
(e2πin·x + e2πin·Px + e2πin·P2x),

where we divide by three simply so thatWn(0) = 1.

Notice that when restricted to the plane Π,

Wn+(j,j,j) = Wn for j ∈ N.
Setting n = (n1, n2, n3) and representing a typ-

ical point in Π as XV1 + YV2, we write these wave

packets in the form

Wn,m(X,Y) =
1

3
(e2πi(nX+mY) + e2πi(mX−(n+m)Y)

+ e2πi(−(n+m)X+nY)),

where

n = n1 − n2 and m = n2 − n3.

If we wish to choose n and m first and find a

vector n that gives rise to those frequencies, one

choice is (n+m,m,0).
This is why we claim that every (sufficiently

smooth) wallpaper function on the plane with 3-

fold rotational symmetry can be exhibited as the

restriction of a function of three variables that is

periodic with respect to the integer lattice and in-

variant under cyclic permutation of variables: The
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functions Wn,m(X,Y) form a basis for functions

with the desired symmetry in the plane, and every

Wn,m is the restriction of some Wn. We write

(1) f (X, Y) =
∑

n,m

an,mWn,m(X,Y)

for the typical wallpaper function—a superposi-

tion of wallpaper waves.

To continue the discussion of functions with

additional symmetries, we omit some messy de-

tails and present the reader with the fact that the

map

σc(X,Y) = (Y ,X)
is a mirror reflection in Π, so that any sum of the

form (1) where

an,m = am,n
will represent a function with mirror symmetry.

Every function of the form

f (X, Y) =
∑

n,m

an,m(Wn,m(X,Y)+Wm,n(X,Y))

is invariant under the group p31m (or 3*3 for

orbifold enthusiasts).

It is amusing to choose coefficients to create

pleasing functions. One example of a function

invariant under p31m is shown in Figure 2.

It is likewise amusing to work out recipes

to create functions invariant under the groups

p3m1, p6, and p6m, but that information appears

elsewhere [2], along with the details about various

ways to use color to depict a complex-valued

function in the plane, so we move on to 5-fold

symmetry.

Before we do, note this crucial fact about the

construction: We were able to find a basis for

Figure 2. A function with symmetry group p31m.

Π consisting of vectors with integer coordinates.

This is the only reason we could claim that the

restricted function is periodic with respect to a

lattice within Π, given only that it is periodic with

respect to the integer lattice in R3.

What Happens If We Use 5 Variables?

The same construction can be attempted inR5. Let

us review why we do not expect to create functions

with 5-fold symmetry that are also periodic with

respect to a lattice. The reason to include this well-

known explanation is that it suggests something

to look for in the images.

The Crystallographic Restriction

We prove a special case of the crystallographic

restriction, showing that 5-fold rotations are never

present in wallpaper groups: Suppose a wallpaper

group G contains a translation T and a rotation R

through 2π/5 radians. In any wallpaper group, one

may always find a shortest translation, so suppose

further that T is a shortest translation in G. It is

easy to check that U := RTR−1 and V := R−1TR

are translations along vectors at angles of ±2π/5

radians from the direction of T , as shown in

Figure 3. If T translates the center of rotation O

to the point A, then the composite translation UV

translates O to X, producing a shorter translation

and contradicting our assumptions. Therefore, no

wallpaper group contains a rotation of order 5.

It is easy to compute that the ratio
-----------------------------------------→
OA/

--------------------------------------------→
OX is

the golden ratio, (1 +
√

5)/2, which we denote φ.

The reader may enjoy looking back at Figure 1,

which seems to be invariant under a translation

T and a rotation R through 2π/5 radians. Where

is the shorter translation that our computations

have guaranteed?

V

O

U
X

A

T

R

U

Figure 3. A translation and a rotation through

72◦72◦72◦ create a shorter translation: The

composition of V := R−1TRV := R−1TRV := R−1TR with U := RTR−1U := RTR−1U := RTR−1

produces a translation that is shorter than TTT by

a factor of 1/φ1/φ1/φ.
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Wallpaper with 5-fold Symmetry?

Let us imitate the procedure we used for 3-fold

symmetry. Again we call P the linear transforma-

tion defined by cyclic permutation of the variables:

P(x, y, z, u, v) = (v, x, y, z, u).
Likewise, we take f to be any function periodic

with respect to the integer lattice in R
5 and

symmetric under cyclic permutation. An easy

first example, which we will carry through the

remainder of this section, is

f (x, y, z, u, v) = sin(2πx)+ sin(2πy)+ sin(2πz)

+ sin(2πu)+ sin(2πv).

The eigenspaces of P are one line spanned
by [1,1,1,1,1] and two planes, with P acting
as rotation through 2π/5 in one plane and
4π/5 in the other. We select the first of these
planes to call Π. One basis for Π is

E1 = [1, cos(2π//5), cos(4π/5), cos(6π/5), cos(8π/5)],

E2 = [0, sin(2π/5), sin(4π/5), sin(6π/5), sin(8π/5)],

In our construction of functions with 3-fold

symmetry we easily found an eigenbasis with

integer entries. Some reorganization of E1 and E2

gives the basis

V1 = [
1

φ
,

1

φ2
,− 1

φ2
,− 1

φ
,0],

V2 = [0,
1

φ
,

1

φ2
,− 1

φ2
,− 1

φ
] = PV1,

where φ is the golden ratio.

We can see that there is no way to obtain integer

entries from these: If we clear a denominator of

φ2, we create a factor of φ in another entry. In

fact, this plane is irrational, in the sense that it

contains no rational vectors at all.

This throws a fly into the ointment if we

are trying to construct wallpaper functions with

5-fold symmetry. However, it leads us to interest-

ing pictures. Let us start with a function invariant

under P and defined by a Fourier series relative to

the integer lattice in R5. Then let us restrict f to Π
by the equation

F(s, t) = f (sV1 + tV2).

When we do this with our example of the cyclic

sum of sines, we obtain the function pictured in

Figure 4. The origin of Π, near the lower left of the

picture, is, in fact, a center of 5-fold symmetry.

Toward the top there seems to be a translated

appearance of the same pattern, with what looks

like another 5-center. Another appears on a ray

through the origin 72◦ from the vertical. Divide

either of these apparent translation vectors by φ

and notice that there is, well, not translational

symmetry, but translational ballpark nearness of

the pattern. Divide again.

Figure 4. A cyclic sum of sine waves, restricted

to the plane ΠΠΠ.

To move in the other direction, we recompute

the image for the translated function f ((s+89)V1+
tV2). It looks exactly the same as Figure 4! We

know that this function cannot have translational

symmetry, but something interesting is going on.

Perhaps you have already guessed what, having

recognized the number 89. Applying the Binet

formula for Fn, the nth Fibonacci number,

Fn =
φn − (−φ)−n√

5
,

we find that, although there are no integer vectors

in the plane Π, there are integer vectors arbitrarily

close:

FnV1 = [Fn−1, Fn−2,−Fn−2,−Fn−1,0]

+ (−φ)−n[−1,1,−1,1,0],

and likewise for Fibonacci multiples of V2. From

this, it is an easy estimate to find that

|F(s + Fn, t)− F(s, t)| < 5/φn.

Although this exemplary function f cannot

have any translational symmetries (we know this

from the crystallographic restriction), it does have

what we will call quasisymmetries. As with Bohr’s

almost-periodic functions, given any ǫ > 0, we can

find a translational distance T so that

|F(s + T, t)− F(s, t)| < ǫ.

Conclusion

The example is only one in a large space of

functions with the same symmetry, or rather

quasisymmetry. Just as in our construction of

functions with 3-fold symmetry, we can start

with any cyclically invariant waves in 5-space and
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Figure 5. An unretouched depiction of our effort

to create 555-fold symmetry.

restrict them to the plane Π. There are limited

possibilities for mirror symmetry, though we will

mention that the example that arose from the sine

function had a mirror color-reversing symmetry.

Superimposing only cosine waves does create

functions with symmetry about five mirror axes,

at least at one point. The opening example enjoyed

this extra symmetry.

Though we have not violated the crystallo-

graphic restriction, we have found an interesting

family of functions. They invite our eye to wander

and enjoy the near-repeats. As for the attractive

fraud that opened this paper: A bit of Photo-

shopping made it look rather more symmetrical

than it is. Figure 5 gives an unaltered view of the

quasisymmetry.
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About the Cover

Irrational Symmetry

 

The cover image was produced by Frank Farris, and is a modification of Figure 4
in his article in this issue.

It records the values (through coloring and shading) of a fairly simple periodic
function (specified in that article), restricted to one of the eigenplanes of the cyclic
permutation in R

5. What’s important here, as he says in the article, is that although
crystalline 5-fold symmetry is impossible, it can be very closely approximated. The
basic idea behind what one sees is already apparent in two dimensions—the figure
below shows in a similar way the restriction of cos(x) cos(y) to an irrational line in
R

2.

But the details of what happens in Farris’ figure are nonetheless striking, per-
haps even hypnotic, and what one sees is certainly more striking in two dimensions
than in one. Mathematically, the effect is due to lattice points in Z

5 that are near
to the plane, and the extraordinary accuracy with which patterns are repeated is
presumably due to the accuracy with which the golden ratio is tightly approxi-
mated by rational numbers. And perhaps also something intrinsic to human visual
perception.

We thank Frank Farris for the time and effort spent on this.

—Bill Casselman

Graphics Editor

(notices-covers@ams.org)
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