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Topology is the study of deformable shapes; to draw a picture of a topological object one must choose a
particular geometric shape. One strategy is to minimize a geometric energy, of the type that also arises in many
physical situations. The energy minimizers or optimal shapes are also often aesthetically pleasing. This article
first appeared translated into Italian [Sul11].

I. INTRODUCTION

Topology, the branch of mathematics sometimes described
as “rubber-sheet geometry”, is the study of those properties
of shapes that don’t change under continuous deformations.
As an example, the classification of surfaces in space says
that each closed surface is topologically a sphere with a cer-
tain number of handles. A surface with one handle is called a
torus, and might be an inner tube or a donut or a coffee cup
(with a handle, of course): the indentation that actually holds
the coffee doesn’t matter topologically. Similarly a topologi-
cal sphere might not be round: it could be a cube (or indeed
any convex shape) or the surface of a cup with no handle.

Since there is so much freedom to deform a topological ob-
ject, it is sometimes hard to know how to draw a picture of
it. We might agree that the round sphere is the nicest example
of a topological sphere – indeed it is the most symmetric. It
is also the solution to many different geometric optimization
problems. For instance, it can be characterized by its intrin-
sic geometry: it is the unique surface in space with constant
(positive) Gauss curvature.

More physically, we can also consider the isoperimetric
problem: among surfaces in space with a fixed surface area,
which one encloses the most volume? Or equivalently: among
surfaces enclosing a given volume, which uses the least sur-
face area? Surface tension causes a soap bubble, as in Fig-
ure 1, to almost instantly find the round sphere as the solution
to this last problem. This answer was known to the ancient
Greeks, but was first given a rigorous mathematical proof in
the late 1800s.

II. BUBBLE CLUSTERS AND FOAMS

Clusters of two or more bubbles are not single smooth
surfaces, but form examples of spaces that topologists call
complexes: different sheets of surface joined together along
curves. Again, the soap film seeks to minimize the area
needed to enclose and separate the given volumes of the vari-
ous bubbles. Certain basic results are known: each soap film
in a cluster has constant mean curvature, and the films meet
at constant angles along triple curves and at tetrahedral junc-
tions. But bubble clusters and foams are still a source of many
interesting open mathematical problems [SM96, Sul98]. For
instance, it was only around the turn of this century that math-
ematicians proved (see [Mor01]) that the standard double bub-

FIG. 1: A soap bubble minimizes surface area for a given enclosed
volume, and thus becomes a round sphere.

ble – made from spherical caps – beats all possible competi-
tors as in Figure 2.

For clusters of more than two bubbles, the area-minimizer
is still unknown mathematically, but clusters of three or four
bubbles can again be built out of spherical pieces as in Fig-
ure 3, and these are conjectured minimizers.

Some bubble clusters have independent mathematical in-
terest. For instance, the four-dimensional analog of the do-
decahedron – known as the 120-cell or dodecaplex – can be
radially projected to a three-sphere and then stereographically
projected to ordinary space. The result, shown in Figure 4, is
a complicated and symmetric cluster of 119 bubbles [Sul91].

A foam – as found say in shaving cream or in the kitchen
sink when doing the dishes – is like a cluster of many bubbles.
Mathematically it is easiest to consider infinite, triply-periodic
foams that fill all of space. Lord Kelvin [Tho87] asked for
the least-area foam whose cells all have equal volume. His
conjectured symmetric solution remained unbeaten until more
than a century after it was proposed (Figure 5): the Weaire-
Phelan foam [WP94] mixes two shapes of cells and ends up
with less average surface area per bubble [KS96].
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FIG. 2: A standard double bubble (left) consists of three spherical caps meeting at120◦ dihedral angles along a circle. (The inner film curves
slightly away from the smaller, higher pressure bubble.) It was relatively easy for mathematicians to show that the minimizing double bubble
must have rotational symmetry, but then it was hard to rule out strange configurations (right) where one bubble forms a belt around the other,
or even cases where the bubbles have several disjoint components.

FIG. 3: The standard triple bubble is also built from pieces of round
spheres meeting along circular arcs. Using Möbius transformations,
we can make a version of this cluster with any desired triple of vol-
umes. These are conjectured to be the optimal triple bubbles, but this
has not yet been proven (except in 2D).

FIG. 4: This cluster of 119 bubbles is the stereographic projection
of the dodecaplex or 120-cell, a regular polytope in four dimensions.
One of its 120 dodecahedral cells projects to the infinite outside re-
gion. The others are arranged in seven symmetric layers around a
tiny central bubble.
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FIG. 5: The Kelvin foam (left) fills space with congruent cells, truncated octahedra tiled in a body-centered cubic lattice. The Weaire-Phelan
foam (right) saves area by using two different shapes of cells, with equal volumes but different pressures. These cells fit together in a crystal
pattern called A15, found in transition-metal alloys.

III. SPHERE EVERSIONS VIA WILLMORE ENERGY

A stiff steel wire can be bent into space, but will spring
back to its original straight shape. Its elastic energy in any
given configuration is proportional to the integral of curva-
ture squared. (This is analogous to Hooke’s law that the en-
ergy of a spring is propotional to displacement squared.) The
corresponding elastic bending energy for surfaces has several
forms which are equivalent by the Gauss–Bonnet theorem:
most common is the Willmore energy (see [PS87, Wil92]),
the integralW of mean curvature squared. Physically, many
bilayer surfaces, such as biological cell membranes, seem to
minimize this energy. For instance, minimizingW while fix-
ing area and enclosed volume can lead to shapes like that of a
red blood cell (Figure 6).

Mathematically, it is also interesting to considerW for im-
mersed surfaces, that is, for surfaces which are allowed to self-
intersect, but which have to stay smooth, with no creases, cor-
ners or rips. The sphere in Figure 7 is immersed in a compli-
cated way – making it hard to recognize as a sphere – but this
shape is a stationary point (a saddle point) for the Willmore
energy.

FIG. 6: This shape was obtained by minimizing the Willmore energy
for fixed values of surface area and of enclosed volume. Cell mem-
branes probably minimize this same energy, and indeed this picture
is reminiscent of a red blood cell.
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FIG. 7: This saddle point for the Willmore energy is obtained from a
complete minimal surface with four flat ends by a Möbius transfor-
mation (inverting in a sphere). It is conjugate in a certain sense to the
Morin surface of Figure 10.

FIG. 8: Tom Willmore at the mathematical research institute in Ober-
wolfach in the year 1998, standing next to a metal sculpture of a
Boy’s surface that minimizes Willmore energy, made out of ribbons
of flat steel plate that have been riveted together.

Immersed surfaces are the key to defining a sphere eversion
(see [Sul99]). To turn a sphere inside out physically, we have
to cut a hole in the sphere, pull the rest of the surface through
the hole (as when turning a sock inside out) and then finally
patch the hole. Mathematically, the interesting problem is to
do this without a hole: the surface must be an entire smooth
sphere at all times, but it is allowed to be immersed with self-
intersections. One sheet of surface can pass through another
(like a ghost through a wall) without affecting the integrity
of the sphere. But again, no pinching, creasing or ripping is
allowed. After Smale proved abstractly that a sphere eversion

FIG. 9: The three-fold minimax eversion starts with the red sphere
at the upper left and moves clockwise. The large center image and
the two images below it are near the halfway stage, where we have a
double cover of the Willmore Boy’s surface.

FIG. 10: A Morin surface is an immersed sphere with four lobes
interchanged by rotational symmetry, two showing the inside surface
(blue) and two showing the outside (red). It was described by Morin
as the halfway stage of the simplest possible sphere evesion. This
picture shows a Willmore-minimizing Morin surface; the white tubes
highlight the self-intersection curves.

was possible, other mathematicians took years to find the first
explicit eversions.

One strategy is to use a projective plane, immersed as Boy’s
surface, at the halfway stage. That is, in the middle of the
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FIG. 11: Bernard Morin, at a conference on Art and Mathematics
in Maubeuge, France in the year 2000, exploring the geometry of
a Willmore-minimizing Morin surface, built on a stereolithographic
printer directly from the computer data.

FIG. 12: We simulated the minimax eversions on the computer using
polyhedral surfaces with thousands of triangular faces. To visualize
the intermediate stages of an eversion, we can remove the middle of
each triangle to look through the surface, and emphasize the double
curves of self-intersection with white tubes.

eversion, we immerse the sphere in such a way that each
pair of antipodal points maps to a single point in space: two
sheets of surface always lie exactly on top of each other. To
perform the eversion, we pull the sheets apart and simplify
the result until it is a round sphere. The idea of themini-
max eversions[FSK+97] is to do the simplification automat-
ically by minimizing the bending energyW . This results in
shapes which are more pleasantly rounded than in the topo-
logically equivalent eversions designed earlier by hand. The
halfway stage in a minimax eversion is a saddle point forW ,
for instance the Willmore-minimizing Boy’s surface, which
has also been depicted in a large metal sculpture (Figure 8)
at the mathematical research institute in Oberwolfach, Ger-
many [KP97].

We simulated the minimax eversions numerically, and the
resulting animations were featured in our video “The Opti-
verse” [SFL98], premiered at the 1998 International Congress
of Mathematicians in Berlin. The three-fold eversion, passing
through the Willmore Boy’s surface, is shown in Figure 9.

The simpler two-fold minimax eversion uses a Willmore-
minimizing Morin surface (Figure 10) at the halfway stage.
This immersed sphere has four lobes, and a 90-degree rota-
tion interchanges the inside and outside. The surface is named
after the blind French mathematician Bernard Morin, who de-
scribed it topologically for one of the first explicit sphere ev-
ersions [FM79]. To show him what our Willmore-minimizing
version of the Morin surface looks like, we presented him with
a model created on a 3D-printer directly from the computer
data, and he could explore it with his fingers as in Figure 11.

The two-fold minimax everion agrees topologically with
Morin’s eversion, and because of its relative simplicity, we
can understand it well in “The Optiverse” by flying through
the intermediate stages, with views like Figure 12.

With a team led by Stan Wagon, we also carved a large
Morin surface (though not the Willmore version) out of snow
(Figure 13) at the 2004 International Snow Sculpture Cham-
pionships. The following year, we competed again, sculpting
a mathematical knot.
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FIG. 13: This Morin surface (left), carved out of snow at 4 meter scale, won an honorable mention for “Most Ambitious Piece” at the
International Snow Sculpture Championships in Boulder, Colorado in January 2004. One year later, our team turned to knots as another source
of interesting mathematical sculpture, carving a2-fold cabling of a trefoil knot (right).

IV. TIGHT KNOTS

Knot theory is the branch of mathematics concerned with
giving a topological classification of knots – simple closed
space curves – by considering which curves can be deformed
into each other without crossings. Geometric knot theory
looks at connections between the topological complexity of
a knot and the geometric complexity of any space curve re-
alizing that knot type. One idea, with possible relevance for
physical knots tied in rope, is to consider tight knots and links,
made out of rope of fixed circular cross-section, pulled tight to
minimize the length of rope needed. Although some basic the-
ory for this problem is known [CKS02], only a few tight links
– where each component is a planar curve as in the Borromean
rings (Figure 14) – have been described explicitly [CFK+06].
This tight configuation of the Borromean rings, viewed along
the axis of three-fold symmetry, has been selected as the logo
(Figure 15) of the International Mathematical Union (IMU).

Some knots break their symmetry when pulled tight, or
when minimizing other geometric knot energies. For instance,
the(3, 4)-torus knot has configurations with perfect three- or
four-fold symmetry. But if we minimize a certain repulsive-
charge knot energy related to the Coulomb potential, this sym-
metry gets broken as in Figure 16. The knot then reveals itself
as an interweaving of two trefoil knots.

While no tight knot of a single component is known explic-
itly, numerical simulations show some cases (like the Turk’s
head knot in Figure 17) keeping their symmetry, with pieces
geometrically similar to those found in the Borromean rings.

V. MATHEMATICAL VISUALIZATION AND ART

We have looked at a number of geometric optimization
problems, and have seen how their solutions often exhibit
graceful shapes. But if we want to depict them – either as
three-dimensional sculptures or as two-dimensional images –
there are challenges because of their complexity. Mathemati-
cally interesting curves and surfaces often have lots of hidden
interior structure: the middle stages of a sphere eversion have
complicated self-intersections, foams fill space with touching
bubbles, and the various strands in a tight knot or link push up
against each other.

Many of the figures in this article depict transparent sur-
faces. These are computer graphics renderings made with
Pixar’s RenderMan software, using the custom-made shader
for soap films [AS92] that I programmed using the Fresnel
laws of thin-film optics. Notably, the transparency of a soap
film is much lower when viewed obliquely; this feature is
missing from most simple computer graphics algorithms for
transparency. Sometimes we have artificially darkened the
transparent surfaces, in order to better show which sheets of
the surface are in front of the others.

Often, the geometry depicted comes from numerical sim-
ulations using Brakke’s Surface Evolver [Bra92]. Although
this program was originally designed to minimize area, as in
bubble cluster problems, the Evolver has been extended to
minimize many other geometric energies, including the elas-
tic bending energies and knot energies we have discussed. For
most of the situations described here, the mathematical theory
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FIG. 14: The tight configuration of the Borromean rings has pyritohedral symmetry, with each component being a piecewise smooth planar
curve described in part by elliptic integrals. These renderings in different styles are from the video “The Borromean Rings” [GS08a, GS08b],
premiered at the 2006 International Congress of Mathematicians in Madrid.

FIG. 15: The new logo of the IMU (left), chosen in an international
competition, is a three-fold symmetric view of the tight Borromean
rings.

FIG. 16: The(3, 4)-torus knot in an energy-minimizing configura-
tion (right) breaks its symmetry and exhibits itself as two interlocked
overhand knots: this has been called the “true lover’s knot”.

lags behind the numerical simulations, and there are interest-
ing open problems related to proving that these pictures are
accurate. The interplay between numerical simulations (with
visualizations) on the one hand and rigorous proofs on the
other is what allows progress on both fronts.

Optimization principles can also be used to design math-
ematical artwork that goes beyond pictures created primarily
for visualization purposes. My mathematical sculpturesMin-
imal Flower 3 and Minimal Flower 4, shown in Figure 18,
combine the ideas of minimal surfaces and knots, and were
inspired by work of Brent Collins. They were first exhibited
together at the Institut Herni Poincaré in Paris in 2010. The

first step in creating them [Sul10] is to design a knotted bound-
ary curve with the desired three- or four-fold symmetry and
span it with a crude surface having the correct topology. Then
the Evolver can be used to minimize the area of this spanning
surface until it has the geometry of a soap film. Here we have
to be careful to maintain the symmetry, as the deisred surfaces
are unstable soap films, not least-area surfaces. The aesthetic
effect is improved if we actually work in the conformal ball
model of hyperbolic space, accentuating the U-shaped cross-
section of the outer loops. Finally, the mathematical surface
has to be given a tapered thickness to create the physical sculp-
ture.
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FIG. 17: A stereo view of the (presumably) tight configuration of the Turk’s head knot818, rendered by Charles Gunn. The middle image is
for the right eye: to see the stereo effect, view the left pair wall-eyed or the right pair cross-eyed.

FIG. 18: The sculpturesMinimal Flower 3and4 depict minimal surfaces spanning knotted boundary curves. This picture was taken at the first
meeting of the European Society for Mathematics and Art in Paris in July 2010.
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