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Preface

The second Conference of the European Society for Mathematics and the
Arts (ESMA) was held at the Department of Mathematics of the University
of Cagliari (Italy-Sardegna) from 18 September to 20 September 2013. This
volume gathers together the texts of the majority of talks held during the
conference.

Since 2010, when the first conference was held in Paris, minds have been
considerably and recently rapidly evolving. It seems now widely and quite
accepted that the marriage of Art with Mathematics has a positive feedback on
the intelligence and the acceptance of mathematics by most of the public.

When planing the conference, three main themes were defined:

Theme 1: Mathematical tools and software for the creation of artistic
scientific visualizations
Theme 2: Analysis of artistic works from the mathematical point of view
Theme 3: Pedagogical uses of scientific artistic works

The main scope of the lectures was to give useful old or new tools to a wide
audience to get in touch with some mathematics that artists could use to create
new works. By focusing the attention on these tools, the idea was not only to
enlarge the possibilities of creation by artists, but also to invite mathematicians
to maybe locally deepen some of their theories. An other aim was the promotion
of math and art activities in the educational system, which are going on now.
There is only one contribution entirely focused on this third theme, emphasizing
the role of exhibitions associated with lectures, but most other contributions,
concerning models, have some connection with it.

The historical article by Livia Giacardi mainly refers to the works of the
Italian school at the end of the 19th century and the beginning of the 20th. At
that time, algebra and analysis had not taken the important role they have got
today, and algebraic, analytical and differential geometry played an important
place in the teaching at any level. Some models and works are described and
analyzed in the articles by most of the speakers. The beautiful models in wood
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made by Joseph Caron during the same period are now currently exhibited in the
library of the Poincaré Institute. They have been mathematically reconstructed
by François Apéry. In some sense, Joseph Caron was a pioneer of singularity
theory. This kind of work may be understood as an encouragement to study
generalizations of physical and mechanical devices to higher dimensions giving
rise to richer mathematical configurations and illustrations. A question remains
without answer: for which courses did the Italian geometers and Caron use these
models, and what was the pedagogical success of that uses ? Note that the series
of polyhedral models constructed by Richard Denner to illustrate the sphere
eversion is typically in the spirit of all the previous models since they intend to
be used as pedagogical tools. As George Hart did, he gives recipes to build the
models.

But George’ motivations are different from Richard’s in the sense that his
artistic passion was the main incentive to create his well known, beautiful,
attractive and definitively original polyhedra. He gives the very detailed clues to
reproduce them with a large size, and relates the various successful pedagogical
experiences he made in the American context, where large groups of students
gather to build up the artwork.

There is some similarity between that presentation and Dmitri Kozlov’s
one. Dmitri shows several people working at reconstructing one of his kinetic
modules. These modules are cyclic periodic knots he first carefully studied as
mathematical objects in a previous work. Materialized in metal or in fiberglass,
being able to be constructed at any size, they can be used in architecture and for
education as well. One of their characteristics is flexibility both in the material
sense and in the conceptual sense. They can be deformed, so that the same knot
can move into the frame of a sphere, of a torus or of an hyperboloid. From the
pedagogical point of view, these original modules share a new mechanical and
mathematical interest. Some analysis not only bring some new highlights on the
works, but also allow to improve and extend them. That is for instance the case
of Dough Dunham’ study of Escher’s work in 2-dimension hyperbolic geometry
from which he constructs aesthetic triply periodic polyhedra. We are entering
again the domain of real artistic works arising from the mathematical world.

Using various mathematical theories among which dynamical systems and
time series analysis, the refined analysis of the scores of some well known
composers by Renato Colucci and his colleagues allow them to propose
algorithms which approximatively simulate the content and the structure of
these scores. Then they can play to create interesting pieces of music which mix
up different composers.

The work by Francesco De Comite is not focused on new mathematical
research giving birth to new mathematical objects, but on a clever artistic use
of former mathematics through recent computer tools he masters. He is a well
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known graphic artist, and shows a few of his original works coming from his
favorite mathematics. Though he comes from computer science, one can say
that, being a specialist of anamorphosis, he has a topological mind in the sense
that he likes deformations, using the flexibility given by parameters. Bifurcation
theory is related to creativity and life.

Artists or not, most people are today familiar with standard symmetry with
respect to mirrors, or affine linear subspaces. There is no standard symmetry
without underlying stability. On the other hand, standard symmetry is a special
case of a more general symmetry with respect to any manifold, and which has to
be seen first as local. When the manifold is a n-dimensional circle, the analytical
formulation of that symmetry is called inversion. The article by Renzo Caddeo,
Gregorio Franzoni and Paola Piu uses this inversion to fold a beautiful surface
named the Dini surface, and to create a nice bouquet of such Dini surfaces.
Nowadays, with the weakening of the teaching of geometry, inversion might be
unfortunately ignored by many students. They will find here the possibility to
get familiar with it, while artists could use it to get nice deformations of some
of their objects and to improve their creations of works.

From the fact proved by Nash and Tognoli that any C1 manifold has a real
algebraic model, polynomial representations are the most frequent to appear in
the mathematical literature devoted to geometry and topology. I would like to
emphasize the usefulness of the Minkowski tricks used by Daniela Velichova
to construct new shapes and which can be used to create numerical and visual
representations of new mathematical objects that artists could use. I would
like also to mention the fact that, apparently, there is no paper devoted to the
mathematical study of this kind of representation.

I suspect that general cones defined by the last author could be better
visualized through the previous means. I shall not comment anymore this theory,
the introduction and the conclusion of the article are quite explicit.

During the Conference, we could visit a nice mathematical exhibition inside
the “Citadelle dei Musei”, and applaude a joyful play of theater written by our
hosts. All the participants would like to thank Renzo Caddeo and his colleagues
for the perfect organization of this Conference, in a warm atmosphere.

It is a pleasure to thank Catherine and André who welcomed us at Cassini.
This publication is made possible through a grant from Cap’maths as part of the
Investissements d’avenir (Future Investments) program.

Claude Paul Bruter
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THE PEDAGOGICAL VIRTUES OF MATH AND
ART EXHIBITIONS

Claude P. Bruter

Abstract

This article deals with exhibitions of artistic mathematical works as useful
tools to fight against the disaffection of the public towards mathematics.

1 Problems of today and of yesterday

The subject which we will treat in this article concerns disaffection of various
publics towards the sciences, and more particularly towards mathematics. How
to succeed in reconciling these publics with mathematics in particular, the role of
which is fundamental in the understanding of our universe, of our environment,
in the conception, the creation and the implementation of all these means among
others technical which facilitate our lives and which prepare our future? What
are the contents of the messages which we should send, be assimilated by these
publics, and how can we achieve this?

Many of us share the conviction that artistic work can be a useful tool for
the diffusion of mathematics, their initiation, their teaching. But it is a fact
that many of our fellow-citizens, of our decision makers, even some of our
colleagues, are not convinced of the merits of that approach, either due to lack
of judgment and reflection, or quite simply from ignorance.

This article intends to address those not very familiar with mathematics and
arts decision makers, and those colleagues who are not totally convinced. Being
mainly focused on exhibitions, it is a very partial introduction to the subject.

2 The foundations of the argumentation

It is obviously impossible to handle in detail and in a short article the multiple
aspects of the elementary questions which have just been introduced. I shall
have to content myself with making here one excessively short and synthetic
presentation of some points of view and partial solutions that I have already had
the opportunity to expose and to experiment with.

1



2 Claude P. Bruter

The following arguments constitute their common foundation:
an argument drawn from general biology: in all the aspects of development
and evolution, ontogeny recapitulates more or less, and is a reflection of
phylogenesis, in particular its important accidents. As a consequence, in
order to teach and to lead to a better understanding of the most modern
theories, it is necessary to carry out an intellectual journey analogous to that
which has accompanied, over time, the progressive implementation of the
basic notions and the essential facts, since their most distant origins.
an argument related to our physiology: connected to the general vitality
of the body and its driving system, the primary sensitivity is that of the
senses, enabling us to immediately comprehend our world, its dangers and
its advantages. Very young children, up to four-five years of age, have a
global vision of space, a spontaneous prehension of 3D. The view fixed to the
plane, the mental exercise, practiced during school years, the young years of
maturation of the brain, and restricted to what takes place in two dimensional
space, tend to make the imaginative vision in the three dimensional space
difficult later.
an argument also related to our affectivity: the most of us assign to the
objects that we meet aesthetic qualities to which we are often sensitive
to varying degrees. Our strongest and most long-lasting impressions are
generally those which have struck our emotions.
These primary concepts are strongly present in the first part of a work

entitled Comprendre les Mathématiques [1], about which the late Gustave
Choquet, announcing his “admiration for this beautiful success”, wrote, this
“book merits to be read and reread”.

These are also the underlying concepts of the ARPAM project, in the form
of exhibitions of works, conceived from mainly mathematical considerations,
remarkable enough to be able to be qualified as works of art.

The value of a work, whatever it is, is measured by the quality of its
realization, the originality of its conception and by its contents. It is the
unexpected which strikes and which attracts, here is for the appearance, but in
the end, we consider its significance and its contribution to universal well-being,
knowledge and intelligence.

It is not always immediately obvious to appreciate this value, to recognize it
and to comprehend it in all its aspects. The guidance of a third person is never
useless to reveal these contents.

3 Some critical observations

Do we flee from the mathematics? Why? Most likely because what we teach is
hardly apparent in the physical world and is not physically perceived, has no
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immediate meaning for the body, does not awaken the senses, requires an effort
for the spirit to give it any tangible reality. The effort is mostly without profit,
disappointing, disheartening for some. What we show is fragmented, without
reference to history which shows the justified genesis of things, thereby confirm
their presence. We do not understand where we are being directed, or how this
present joins in an organized ensemble, reassuringly solid.

Its embodiment in the material object gives to the mathematical abstracted
object a physical reality, the image and functional character of which can be all
the more comprehended and felt by the spectator. If this functional character is
absent, only particular properties of this material object will allow its image to
join the memory, to assimilate to the cleanly vegetative sense of the term the
essential features.

It will be the case in particular if it presents asserted aesthetic characters.

These are thus the principal reasons for which the mathematical objects
will be accepted, will have their recognized presence whether it is in the form
of models and small sculptures or representative drawings emphasized by the
genius of the artists. We shall no longer, we shall wonder.

In the light of these data and of these common sense facts, it should come
as no surprise that the young generations show a lack of interest in mathematics.
The current trend, under the pressure of some professional mathematicians,
physicists and engineers, is to favor calculus to the detriment of geometry, while
to the young children, the number is almost meaningless, unlike that of the
figure which has a pregnant physical and affective meaning. In the current
teachings of many countries, the number, the letter and their use take it on any
other consideration. In the mind of a child what do these two attached symbols
11, and the number 11 mean: a friend, the cat, a car, a bar (of chocolate)?
And x2C b D 0 or

p
2: that is drinkable, that is edible, we can throw it then

catch it? It is through the exercise, mental calculation, the acquisition of the
multiplication tables that the child can become familiar with number, even if
the numbers have no significance for him. On the other hand, the drawings of a
triangle, a polygon are physical structures which make sense, to be associated
with the shape of common objects.

Thus rather than to eliminate it, it is on the contrary the “monstration” of
shape and its properties that has to be the object first and foremost of all the
attentions in the early education of mathematics. The simple drawing of a
circle is enough to immediately show one of its beautiful properties, the most
wonderful doubtless, the one that surprisingly the circle, the only one among
the infinity of flat shapes, has the privilege to possess. The role of the mediator
here will be to help the creator of the circle, the attentive spectator, to make
the formulation of its observation mature and to help him to express even this
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formulation in exact terms, to give birth would have said Plato to what is being
developing in his mind.

4 The charms of the exhibitions

These exhibits allow the public first to discover the richness of the mathematical
world, and second to allow that public to get acquainted with some quite modern
mathematics, completely different from what they learned at school, and without
any mental stress. The exhibits are thus by no means boring, they are felt
beautiful and amazing, intriguing, enriching, but of course they may leave a
feeling of dissatisfaction from the fact that the meaning of many of the works is
not quite understood, the feeling that a large gap remains between the visitor
and the content of the works he has been admiring. If the psychological position
of most of the visitors towards mathematics remains somehow ambiguous, in
any case, the psychological resistance against mathematics has diminished, and
this is a true first success.

The exhibitions of models, small sculptures and printed works, whatever the
medium may be, show mathematical objects of generally recent conception and
discovery, emphasized by illustrators and quality artists.

These are main advantages in their favor. They present a wealth and beauty
that are often missing in the oldest objects, and it is their very novelty which
attracts the curious and the crowds. Has not the term “fractal” become a
household word for example?

That they were the object of recent attentions on behalf of the mathemati-
cians, make us think that it is the most current mathematical theories which were
of use to their discovery and to their study. In other words that in the presence
of these objects, we are in fact at the heart of modernity. And if thus we bring to
the public some at the same time simple but penetrating explanations on their
subject, the same auditors will be pleased to feel in sync with the most astute
current events. Why then would they reject mathematics? They are beautiful,
multi-form, and thought well in their accessible foundations.

Models and small sculptures have the advantage over the printed works for
they can be touched, manipulated and examined from every angle. Some of
them can be knocked down and built up again as one pleases, adding to their
charm for the handymen. They then become occasional pastimes.

The most interesting of these objects are doubtless the ones which are
realized with threads. We can enter inside objects, allowing us to view hidden
aspects in their structure.

And among these objects in thread, are the deformable ones which illustrate
additional properties. They can take unexpected forms, surprising dynamic
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behavior. Children in particular love to manipulate these objects, which have
now an appreciated playful side.

Finally, rigid or not, suitably lit, their shadows on well chosen surfaces add
to their charm and to their interest, so much rich is the mathematics of the
visible outlines.

I do not doubt, in this place of my presentation, that auditors and readers
are perfectly aware of the value of the exhibitions to contribute in an effective
way to easing the fears felt by a lot of public towards mathematics, and to lead
to a positive vision of our scientific universe, through the enhanced appreciation
of the hidden beauties of mathematics.

5 Taking Advantage of the Pedagogical Content of the Ex-
hibits

If these exhibitions and their contents constitute a quality media tool, it would
be disappointing if we could not use them also for more advanced educational
purposes. Indeed, it would be a shame if the entire content of our collection,
with a large pedagogical potential, remained asleep in some dark dormitories.

We can only regret that the so-called popular annual neighborhood events–
where we see some classes of small merry pupils stopping for one moment
with their guide in front of tables with so-called educational, books, games and
various objects–of so little use to the training of the mind. What do these day
visitors learn of mathematics? We show polyhedrons, we make some simple
tessellations. What could the spectator glancing at the icosi-thingumajig learn?
What new knowledge of mathematics did he come away with his superficial
visit?

The exhibitions, of course, do not escape the same criticism. It is then
advisable to value the contents. We reach the public by presentations made in a
relaxed atmosphere, in the unusual setting of an enlightened public in a setting
containing some of the beautiful works which will be commented on.

The content of the presentation obviously depends on the public being
addressed. Age, educational level, and audience reactions are important factors.
There is no ready-made formula.

Of course the way the presentation is made is important. It should by no
means be an academic presentation. It is better to be joyful and enthusiatic.
The speaker communicates his or her surprise at a property or particular fact,
showing philosophic seriousness in front of such or such property or general,
universal fact, coming and going from an example to the other one in apparently
different situations which illustrate this fact, creating the global vision of a theory
within which the same fact joins, evoking the history and how it is connected
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with other theories. Let us be desire that the auditor leaves the room relaxed,
but also with the understanding of a new general concept, the knowledge of a
new particular fact. Then maybe he will have the impression to have reached the
threshold of the prestigious universe of mathematics, to have crossed a door and
made a first step, the very first step, humble and reserved, in this world which
formerly frightened him, and which seems to him today simple and radiant.
Hopefully he will no longer fear mathematics, and will share this feeeling with
others.

A large audience will accept and be interested in the main facts, in the main
ideas and concepts behind the works, among which, above all, the concept
of stability which has not yet been quite well understood. The presentation
of these concepts should include a few words about their history, the extent
of their incarnation, their importance to the physical, mathematical, artistic
and philosophical worlds, and when possible some easy and fast explanations
as well. Given in a favorable environment, these talks give rise to exchanges
between the enthusiastic speaker and the audience, in a relaxed and rather joyful
atmosphere.

The contents of these presentations at which it is hinted here will very likely
arouse some reserves on behalf of the mathematicians. For the professionals, a
good mathematician is the one who shows his community new properties, and
who explains the reasons for their presence, who gives the proofs. The value
of a researcher lies in creating new concepts and theories, in discovering new
properties.

To see properties demands a familiarity and an attention which the public
cannot acquire alone and be self-sufficient in three quarters of an hour. However,
a speaker can very well during this short lapse of time succeed in awakening
the attention of his public, and in guiding it to understand significant properties
of the objects which it could not distinguish at first sight. So low it is, the
presentation so conceived in the presence of works of art possesses an edu-
cational quality which we cannot underestimate. Still it is necessary to have
warned the public beforehand about this fundamental aspect of the work of the
mathematician.

We can only wonder that it was necessary to wait for year 1742 to notice
that any even number is the sum of two prime numbers. Is it possible that the
great Greek mathematicians had not realized this elementary fact? It happens
that we pass next to the beauty which lines our way without becoming aware
of it, and that the simplest things also are the most difficult to understand and
to justify (prove). The mathematician who is able to prove the greater part of
Goldbach’s observation is destined for fame.

The second quality of the mathematician is to know how to give the
irrefutable proof of the existence of a property. A certain dose of trick, but
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also the familiarity with the various already used technics of demonstration,
their control, the knowledge of numerous already well established properties
are necessary to well lead new demonstrations. It is the reason why the
professionals grant a large importance for any kind of exercise which develops
the mental agility. And besides, an understanding of the demonstrations reveals
a thorough knowledge of objects, generally facilitating the discovery of up to
now unobserved properties.

The presentations address publics which can be qualified as virgin in
mathematical subjects for the most part. Is it then reasonable to make detailed
presentations before them? In these conditions, is the presentation, seen from
the point of view of the professional mathematician, interesting enough to
encourage a more widespread audience?

These last comments deserve to be qualified, because they are the expression
of a somewhat extremist position. We know well that except for some very rare
specialists, to go into detail the knowledge of the complete proofs of the ex-
conjectures by Fermat or Poincaré is a matter of illusion. Happy already the one
who can know the main lines of these demonstrations, the reasons which led to
choose such or such mathematical tool, some of the progress which uncorked in
the obtaining of results appearing now particular, intermediaries, but interesting
in themselves. In front of the scale of certain demonstrations, the mathematician
eventually eventually is satisfied with the knowledge and with the understanding
brought by the datum of these guidelines.

During the maths and arts lectures, it can occur, in some rare and simple
cases, and in front of certain public, that we can justify the assertion by the
reasoning and the deduction, even give these indications evoked in the previous
paragraph on the procedure of demonstration. But more commonly and more
modestly within the framework of these presentations, it will be possible to
mention the theories which come into play, their history and the subject of which
they take care, their objectives, and especially to refer to physical, natural facts,
these theories of which, through their statements, develop the representation
and their effects.

After these presentations, the audience will therefore perhaps enrich their
vocabulary with some mathematical terms denoting particular objects they have
seen, or which have touched their eyes through beautiful images. These objects
will have shown them some features and unexpected properties, objects of which
they have in theory registered some fundamental concepts, objects inserted in
theories of which the audience would have learned some fundamental concepts.

Would this optimistic comment be that one of a dreamer, even a humorist?
We might think that at first, but doubt it in the light of the successful experiments
made in France [2] in 2011 (Fig. 3) and in Greece [3], respectively in 2007 and
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2012 (Fig. 1 et 2) with several classes of children ranging from 5 to 20 years
of age.

Fig. 1

Fig. 2 Fig. 3

It would be necessary, of course, to multiply them, and especially to enrich
them. Local exhibits and exposés could be set up anywhere. With the permission
of the authors, and perhaps a small payment to them, ESMA could send by
e-mail the images of the works that the local organizer would like to show, to
use, and then to print.
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One can find on our website examples of such exposés, unfortunately in
French, looking at Bonne Année jPart IjPart II and Pâtisserie Mathématique
jPart IjPartIIjPart IIIjPart IV. (cf. http://www:math-art:eu/Documents/ListOf
Authors-Publications(3/:php#20).

6 Conclusion

To conclude, we shall resume simply the main part of these contributions.
The exhibitions, which attract the visitors by the novelties that they can

discover, by the large diversity of the works and by the beauties that they reveal,
allow the public to approach the field of mathematics in a relaxed and smoothing
atmosphere. Often seduced by this unexpected world, here are finally our fellow
countrymen pleasantly at peace with one of the most elegant sciences.

Presentations complete the exhibitions. They bring to the visitors a first
knowledge of the concepts and mathematical facts which are developed in
theories. Further, they allow to appreciate the interest, the importance of the con-
cepts which come from their relevance and the generality of their embodiment.
Then placed in the basis of the theories, their genesis is intimately connected
to the history of the development of mathematics. Thus these presentations,
through the marked initiatory character in the field of the mathematics, where
the mathematics conjugate with the arts, contribute to promote thought.

Through the open-mindedness which they bring to the intellectual world and
more particularly to the contemporary scientific world, these exhibitions and
presentations play a positive and original role in the insertion of the individuals
within our societies.
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MODELS IN MATHEMATICAL TEACHING IN
ITALY (1850-1950)

Livia Giacardi

Abstract

Up to the present, the research on the collections of models in Italy has been
limited to examining and cataloguing the collections existing at various
universities, with a great deal of work being carried out mostly by Franco
and Nicla Palladino,0 but an in-depth study of their use in university and
pre-university teaching does not yet exist. In my paper I will deal with this
problem, considering the period running from the mid-nineteenth century
to the early decades of the twentieth century. In particular I will focus on the
following points: the lack of interest in designing and making models for
teaching at the university level at the turn of the twentieth century in Italy,
and its causes; the one exception to this, i.e., Beltrami’s cardboard model
of the pseudospherical surface; models in pre-university schools in the
1800s; Corrado Segre and the use of models at the University of Turin; the
role of models in the ”laboratory school” (Vailati, Marcolongo, Montessori,
Emma Castelnuovo); the reconstruction of university collections of models
in the 1950s. Finally I will try to draw some conclusions from this first
historical analysis of the question.

1 The lack of interest in designing and making models for
teaching at the university level at the turn of the twentieth
century, and its causes

The use of models for research and teaching of mathematics began to spread in
the second half of the nineteenth century and saw mathematicians of the highest
scientific calibre engaged in this effort. The most important initiatives developed
in France (Paris), in the United Kingdom (London, Manchester) and especially
in Germany (Munich, Darmstadt, Karlsruhe, Göttingen)1. Although some first
collections of models date from the early decades of the nineteenth century, the
mass production begun in the seventies mainly in Munich when Felix Klein came
to teach at the local Technische Hochschule and began his collaboration with

0See References on models in Italy.
1See for example N. & F. Palladino 2009 [9].
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Alexander Brill2. In the following years various exhibitions3 and the publication
of catalogues4 favoured the spreading of the use of models in teaching at
international level. Italy remained marginal in the activity of conceiving and
making geometric models, in spite of the many young mathematicians who went
to Germany for post-graduate study5. Actually there was an attempt by Giuseppe
Veronese (1854-1917) to set up a national laboratory for the production of
models. In 1883 Veronese, who did post-graduate work in 1880-1881 in Leipzig
where at the time Klein was teaching, in a report to the minister of education
wrote:6

“I believe that for increasingly substantial progress of mathematical studies
in Italy, an Atelier such as that in Munich would benefit us greatly, because
our schools would be made independent in this respect too from foreigners and
could procure their collections at less expense”.7

In fact he thought that:

“Intuition in Geometry consists in our representing in our minds the figures
in space, in such a way that our thoughts can go into them, alternately uniting
them and separating them, and discovering the intimate nexus that permeates
them. This is the intuition of space that must be developed in the minds of young
people from their most tender years, and to that end it is useful to accompany
each geometric proof, as far as possible, with drawings and models by which
the young person can better comprehend and intuit the geometric properties of
bodies without many mental efforts”.8

2See Rowe 2013 [36].
3We mention the Exhibition in 1876 in London; the World Exhibition in 1885 in Anversa; the

International Exhibition in 1893 in München; World’s Columbian Exposition in 1893 in Chicago; the
International Exhibition in Heidelberg during the Third International Congress of mathematicians
in 1904; the Exhibition in 1914 in Edinburgh.

4See Catalog der Modellsammlung des Mathematischen Instituts der kgl. Technischen
Hochschule München, aufgestellt im Januar 1882 unter Leitung von Prof. A. Brill, 1882 (see
Fischer 1986, p. V; N.& F. Palladino 2009, pp. 51-52); Katalog mathematischer und mathematisch-
physikalischer Modelle, Apparate und Instrumente ... herausgegeben von Walther Dyck, Professor
an der technischen Hochschule München, München: Wolf & Sohn, 1892, Nachtrag, in 1893; VII ed.
1903, VIII ed. 1911.

5Here are the best-known of these young mathematicians: A. Tonelli did post-graduate work
in Göttingen (1877), A. Capelli in Berlin (1878), S. Pincherle in Berlin (1877-1878), G. Ricci
Curbastro in Munich (1877-1878), L. Bianchi in Munich with Klein (1879-1880), G. Veronese in
Leipzig with Klein, (1880-1881), E. Pascal in Göttingen with Klein (1888-1889), C. Segre visited
Frankfurt, Göttingen, Leipzig, Nürnberg, Munich (summer 1891), G. Fano was in Göttingen with
Klein (1893-1894), A. Viterbi in Göttingen, (1897-1898), F. Enriques in Göttingen (1903), etc. In
general, 71% of students preferred to carry out their post-graduate studies in Germany, with only
18% opting for France; see A. Dröscher 1992, Die Auslandsstipendien der italienischen Regierung
(1861-1894), Annali dell’Istituto storico italo-germanico in Trento, XVIII, pp. 545- 569.

6The following translation and all others in this paper are mine unless otherwise noted.
7F. Palladino 1999 [5], p. 60. The report is reproduced in its entirety here.
8Ibid., pp. 59-60.
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In spite of the support of important Italian mathematicians F. Brioschi,
E. D’Ovidio, R. De Paolis, U. Dini and E. Bertini the initiative was unsuccessful.
Starting in the 1880s, the principal Italian universities generally preferred to
acquire models from abroad, mainly in Germany with reference to the catalogues
of Brill and Schilling. The collections of some universities also included models
from France (Muret Collection in Genoa) and England (George Cussons models
of penetration in Naples). The first universities to acquire collections of models
were those of Pisa, Rome, Turin, Pavia and Naples.

Initiatives for designing and producing models can be documented at the
university of Naples; these however were generally limited to use within
the university and there was no industrial production. In particular can be
mentioned the 36 models (wood, bronze, horsehair) for the university teaching
of descriptive geometry which Alfonso Del Re (1859-1921) got his students to
build between 1901 and 19069. In this university the use of models in teaching
practice was also favoured by Ernesto Pascal (1865-1940)10, who specialised in
Göttingen between 1888-1889 with Klein and, after some years spent in Pavia,
arrived at Naples in 1907, where he remained until his death. Here, as Dean of
the Faculty of Sciences he reorganised the teaching of mathematics, creating
for each professorship a laboratory equipped with models and instruments. In
fact be believed that models were useful in both teaching and in research; it is
significant that Pascal mentions models several times in his book Repertorio
di matematiche superiori (Milan: Hoepli, 1898, 1900)11, translated in German
under the title Repertorium der höheren Mathematik (Leipzig, 1900, 1902). Very
important was also the equipment of the Institute of rational mechanics directed
from 1908 by Roberto Marcolongo (1862-1943), where geometric models in
plaster or cardboard, often made by the students, were present alongside models
and tools for the teaching of that discipline. From 1908 to 1934, in this Institute
at least 134 degree theses were discussed, many of them accompanied by models.
In his autobiography, Marcolongo writes:

“This ample and varied material is widely used, and is of the greatest aid in
the lessons of rational and advanced mechanics. There are no lessons in which,
in one way or another, it is not shown to students; indeed, some of the lessons
are completely dedicated to illustrating theoretical results with experiments”12.

Nevertheless, in Italy a systematic activity of designing and then constructing
9See the booklet by Del Re with the title Programma del corso e programma di esame per l’anno

scolastico 1906-1907, which in Appendix includes the list of geometric models built by the students
of the school of descriptive geometry of the University of Naples from 1901 to 1906. Only one of
these models has survived; see F. Palladino 1992 [2], tav. 13.

10Pascal is well known for his integraphs for differential equations, see e.g. E. Pascal, I miei
integrafi per equazioni differenziali, Giornale di Matematiche, (3), 51, 1913, pp. 369-375.

11See e.g. Pascal, Repertorio di matematiche superiori, op. cit. 1900, pp. 447, 469, 480, 750.
12Marcolongo 1935 [26], pp. 30-31.
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geometric models for university teaching at industrial level never flourished. It
is significant, for example, that at the International Italian Exhibition, held in
London in 1888, the Education section was not awarded any prize because the
publishing houses were present only with books and other kinds of publication,
and these had already been evaluated in their own section13. Many years later
in 1904 at the exhibition of models organized during the 3rd International
Congress of Mathematicians (Heidelberg, 8-13 August 1904), Italy did not
display anything, even though five Italian publishing houses were present14. The
invitation to participate in that exhibition, extended to Italian mathematicians
by the historian of mathematics Gino Loria in the pages of his Bollettino di
bibliografia e storia delle scienze matematiche15, was ignored. This situation
seems to be connected to the fact that models were mainly used for educational
purposes, at least according to the data known at present, and it was thus
more convenient to purchase ready-made collections from abroad. Another
explanation might lie in the very nature of scientific research: in the second
half of the nineteenth century, in Italy three different approaches to geometric
research were prevalent: the analytical approach, which was more theoretical
and abstract (Ulisse Dini, Luigi Bianchi, etc.)16; the study of the foundations
of geometry with an emphasis on logical rigour (Giuseppe Peano’s School);
and finally, the working method of the Italian School of algebraic geometry
(Corrado Segre, Guido Castelnuovo, Federigo Enriques, etc.), whose members
instead attributed great importance to intuition and visualisation. In spite of
this, they did not use physical models in their research work, but preferred to
employ the Gedankenexperiment. A famous passage by Castelnuovo describes
the working method that he and Enriques used in their early years:

“We had constructed, in the abstract sense of course, a large number of
models of surfaces in our space or in higher spaces; and we had distributed
these models in two displays cases. One contained the regular surfaces. At the
end, the assiduous study of our models had led us to divine some properties
which had to be true, with appropriate modifications, for the surfaces in both
cases; we then put these properties to the test by constructing new models. If they
stood up to the test, we looked for–ultimate phase–the logical justification”17.

An analogous reference to a sort of virtual models seems to be in the
following passage in a letter of Corrado Segre to Klein:

13See Esposizione Italiana di Londra 1888, London: Waterlaw & Sons, 1888, pp. 231, 233.
14See Modellaustellung, in Verhandlungen des dritten internationalen Mathematiker-Kongresses

in Heidelberg vom 8 bis 13 August 1904, Leipzig: G. B. Teubner, 1905, pp. 731-736.
15See Bollettino di bibliografia e storia delle scienze matematiche, a. VII, 1904, p. 64. Loria

periodically provided information on the construction of new models in his Bollettino.
16The theoretical results about surfaces with constant negative curvature by Dini and Bianchi are

mentioned in the Katalog ... von Walther Dyck, p. 292.
17G. Castelnuovo 1928 [14], p. 194. Cf. also Enriques 1922 [18], p. 139.
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“What you tell me about the effect that synthetic reasonings of n-dimensional
geometry has on you, does not surprise me; it is only by living in Sn, (my
emphasis), by thinking about it always, that you become familiar with these
arguments”18.

This attitude of the Italian geometers towards the geometric objects that
they studied is also highlighted by Oscar Zariski’s review of Beniamino Segre’s
treatise The Non-singular Cubic Surfaces (1942). Zariski wrote:

“But the reader who is willing, so to speak, to live for a while on a cubic
surface (my emphasis) and to read the book in the spirit in which it has been
written will be greatly rewarded by the elegance and ingenuity of the author’s
treatment of the subject. It is based on the principle of continuity and the method
of degeneration”(Zariski 1943).

In university textbooks of the early twentieth century as well the representa-
tion of geometric models is also rather rare and serve solely didactic purposes.
The only example found up to the present in which drawings of surfaces appear
to recall actual models is the treatise Lezioni di geometria intrinseca (Naples:
Presso l’Autore-Editore, 1896) by Ernesto Cesaro, in the part regarding surfaces
of constant positive or negative curvature, and surfaces with a constant mean
curvature (pp. 178, 181). In university textbooks of differential geometry and
projective, descriptive or analytical geometry of the beginning of the century (L.
Bianchi, U. Dini, F. Enriques, F. Severi, G. Castelnuovo, A. Terracini, G. Fubini
and E. Čech) figures are either not introduced, or they are simple schematic
representations of conic sections, quadric and pseudospherical surfaces 19.

2 One exception: Beltrami’s cardboard
model of the pseudospherical surface

As illustrated above a systematic activity of creating and building geometric
models for university teaching did not take roots among the Italian mathemati-
cians. The only exception to this situation is represented by Eugenio Beltrami
(1835-1900), who, as it is well known, in his Saggio di interpretazione della
geometria non euclidea (1868) provided an interpretation of the lobačevskian
plan by means of surfaces with constant negative curvature or pseudospherical
surfaces, but was also interested in the material construction of these surfaces.
From the correspondence with Jules Hoüel, we learn that he began to develop
this interest starting in 1869:

18C. Segre to F. Klein, Torino 11 May 1887, in Luciano and Roero 2012 [24], p. 146.
19In Severi’s Vorlesungen über algebraische Geometrie, Leipzig: Teubner, 1921 at p. 215 a model

of a particular Riemann’s surface is presented.
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“In this period I have had a whimsical idea, which I shall tell you about... I
wanted to try to construct materially the pseudospherical surface, on which the
theorems of non-Euclidean geometry are fulfilled... If you consider the surface
lying between two meridians, close enough together to allow it to be replaced,
over a certain length, by a plane, you can, with little bits of paper cut into
appropriate shapes reproduce the curved trapeziums whose true surface can be
compounded”.20

With the aid of a pupil, Beltrami built several cardboard models, one of
which is still preserved at the Institute of Mathematics of the University of
Pavia. This is the copy 21 which he sent as a gift to his friend Luigi Cremona
(1830-1903) on 25 April 1869 with a cover letter where he mentioned, amongst
other things, a possible industrial-type production:

“I wouldn’t want the model to remain at the Institute just to become food
for the mice ... I would rather that it remain with you, in case one of your
well-intentioned students with more patience than mine wished to try a more
successful construction than the rough one I made. I also have a few other ideas
for a more perfect execution to be made with other means and very different
materials: but for this it is necessary to consult someone who is expert in
industrial manipulations”22.

Fig. 1 a, left) Beltrami’s model; b, top right) the model folded to represent the
hyperbolic type of pseudospherical surface; c, bottom right) the model folded to

represent the parabolic type.

This cardboard model (Fig. 1), as Beltrami explains to Cremona, can be
folded to represent the hyperbolic type of pseudospherical surface, or the

20See the letter from Beltrami to Hoüel, Bologna 13 March 1869, in Boi, Giacardi, Tazzioli
1998 [11], p. 80.

21This model is described by Beltrami in the letter to Hoüel, Bologna 22 April 1869, in Boi,
Giacardi, Tazzioli 1998 [11], p. 91.

22See the letter from Beltrami to Cremona, Bologna 25 April 1869, in Boi, Giacardi, Tazzioli
1998 [11], pp. 201-203.
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parabolic type or simply the pseudosphere, but it cannot be folded to represent
the elliptical type of pseudosphere without making a cut. For Beltrami it was not
only a pleasurable pastime, but a tool for experimentally verifying the results
obtained with theory and for visualising properties, as well as an artefact for
discover new properties.

For example, one new result that he obtained handling his cardboard model
is the following (Fig. 2):

“Draw a straight line AB and at each of its points M draw the straight line
MT which marks the direction of the parallel to AE, following Lobachevsky, with
respect to the distance AM. The envelope of these straight lines is the meridian
of the pseudospherical surface. The distance MN to the point of contact is
constant”23.

Beltrami published this result later

Fig. 2

in 1872.24

Another important result intuited by
Beltrami through manipulating his card-
board model was the following that he
communicated to Hoüel:

“You speak of empirical propositions
that can be found by this means [the
model], and you are perfectly correct, in fact here we have surfaces for which
we possess no general equations. Here then is a proposition that I have begun to
intuit: A pseudospherical surface can always be folded such that any whatsoever
of its geodesic lines becomes a straight line. I give this to you only as an
approximate result that is produced when, holding firm with both hands two
points of the flexible surface, it is stretched as far as possible without tearing
it. This result was even more striking to me because I supposed the opposite (I
cannot say now on the basis of what arguments”25.

The last evidence of Beltrami’s interest in the material construction of pseu-
dospherical surfaces is the 1872 article Sulla superficie di rotazione che serve
di tipo alle superficie pseudosferiche, aimed, as he said himself, “to prepare
the geometrical elements–possibly easy and exact–of a material construction
of the surface itself”26. After 1872 Beltrami abandoned this type of research

23Letter from Beltrami to Hoüel, Bologna 13 March 1869, in Boi, Giacardi, Tazzioli 1998 [11], p.
82.

24E. Beltrami 1872, Teorema di geometria pseudosferica, Giornale di matematiche, 10, p. 53:
Opere matematiche, Milano: Hoepli, 1902-20 (4 vols.), II, 392-393.

25Letter from Beltrami to Hoüel, Bologna 25 March 1869, in Boi, Giacardi, Tazzioli 1998 [11], p.
86.

26E. Beltrami 1872a, Sulla superficie di rotazione che serve di tipo alle superficie pseudosferiche,
Giornale di Matematiche 10, pp. 147-159, cit. at p.147; Opere matematiche II, 394-409.
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and the correspondence with Hoüel shows this fact clearly, because afterwards
no mentions to the construction of models appeared. His interests had progres-
sively shifted toward issues regarding mechanics and mathematical physics.
When Beltrami told Cremona about his attempts to build a concrete model of
pseudospherical surface, he wrote:

“The news that you are involved with the material construction of the
pseudospherical surface pleases me greatly. These effective constructions are
one of my dreams: but I don’t know where to begin. I thus wait eagerly for you
to communicate your results to me”27.

Cremona is the well-known mathematician, who developed the theory of
birational transformations, but also the promoter of the return to the use of
Euclid’s Elements as a textbook in classical schools and therefore a supporter of
a rigorous teaching of geometry. Notwithstanding, rigor was not the only aspect
that characterized his vision of teaching: he also took in account dynamic aspects
(based on the idea of transformation), creative aspects (which referred to the
faculties of imagination, and the aesthetic sense), to which the historical aspect
must be added28. Despite this, as far as we know, it does not seem that Cremona
built geometric models, but he was certainly interested in them. In addition to
the letter to Beltrami this curiosity is attested by some letters to Thomas Hirst
29, where he inquired him about a model that Sylvester intended to build, or on
models built by Julius Plücker, or told about his visit in Munich during which
Klein and Brill showed him the collection of geometric models. In the letters
exchanged with Plücker Cremona asked him if there were photographs of the
models built by Epkens for the Exhibition of Paris in 1867 30. It is quite probable
that the models and their use were also the topic of correspondence with Klein:
in 1869 in a letter to Cremona, Klein underlined the importance of models:

“To me [this] section seems to be interesting, even apart from the theory of
complexes, in so far as here a diverse family of surfaces is discussed in such
a manner that the various shapes which arise are made evident. It has always
seemed to me–and in this sense I understand Plücker’s method when he had

27Letter by Cremona to Beltrami, Milano, 25 March del [1869]. The letter can be found on the
website www.luigi-cremona.it. Beltrami kept a dense correspondence with Cremona: 1036 letters
from 1864 to 1900.

28An example of this point of view is the article L. Cremona 1860, “Considerazioni di storia della
geometria in occasione di un libro di geometria elementare pubblicato a Firenze”, Il Politecnico, 9,
pp. 286-323 (Opere matematiche I, 176-207). See also Brigaglia 2006 [17].

29See the letters from Cremona to Hirst: Bologna 18 January 1965, St. John Wood 13 February
1865, Bologna 24 March 1865, Milan 3 March 1868, 5 Oct 1876, in Nurzia 1999, pp. 72, 75, 77,
137, 175.

30See the letters between Plücker and Cremona: Plücker to Cremona, Bonn 31 March 1867, Bonn
7 August 1867, Cremona to Plücker, Milan 5 April 1867, in Millán Gasca 1992 [29], pp. 154-155,
and Menghini 1994 [27], p. 74.
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models constructed of the surfaces he dealt with there–that for geometrical
problems not only are the theorems important that express relations between
the objects to be treated but also important is the direct visualisation of these
objects”31.

Furthermore, among the papers left by Cremona’s daughter Itala Cozzolino
to the Istituto Mazziniano in Genoa, there are beautiful cardboard models that
Brill sent as gifts to Cremona, as it appears from the original envelope. They
came from the first collection sold by Brill (Fig. 3)32.

Fig. 3 Cardboard models of an ellipsoid and of a hyperboloid that belonged to Cremona

3 Models in the teaching of geometry at secondary schools
at the end of the nineteenth century

Actually, in Italy the use of models had spread in mid-nineteenth century in the
secondary schools and in the training of primary school teachers, in connection
with the pedagogical movement promoted in Torino by the educators Ferrante
Aporti, the founder of the first kindergartens (asili aportiani), Vincenzo Troya
and Antonio Rayneri33.To go beyond the catechistic and repetitive methods in
use up until that time, they maintained the importance of adopting, especially
in primary teaching, the Socratic and intuitive methods, and the usefulness
of basing teaching on children’s experience and the manipulation of concrete
objects34. In his book for primary teacher training, Lezioni di nomenclatura

31Letter from Klein to Cremona, Göttingen, 6 July 1869, in Menghini 1994 [27], p. 55. Other
letters from ad to Klein are kept in the Istituto Mazziniano in Genoa and can be found in:
http://www.luigi-cremona.it/, but they do not contain anything concerning the geometric models. I
am grateful to Simonetta di Sieno for having provided me with these letters.

32See Rowe 2013 [36].
33On the historical context see Pizzarelli 2013 [34].
34See C. Sideri 1999, Ferrante Aporti, Sacerdote, italiano, educatore. Milano: Franco Angeli, pp.

69-107.
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geometrica (Torino: Paravia, 1851, II ed. 1952) Rayneri explicitly discusses the
use of geometric models (Fig. 4), stating:

“It is to be desired that all students can observe them at their leisure,
collocating them in diverse positions and comparing their various parts to
each other and this is impossible if the objects are not submitted to a direct
observation”. (p. XXXVI, II ed.)

Fig. 4 Plate from Antonio Rayneri, Lezioni di nomenclatura geometrica (1851)

Under Rayneri’s supervision, Giuseppe Crotti, professor of geometry and
applied mechanics at the night school of the Workers Society in Torino,
assembled two collections of geometric solids, one with 27 exemplars and
the other of 35, sold in three sets (large, medium and small) by Paravia, a printer
and bookseller in Torino, which at the time had begun to market educational
aids of various kinds for schools35.

In the years that followed other publishing houses also began to publish
catalogues of school materials, including collections of geometric models for
classroom use. One such publisher was Giacomo Agnelli of Milan, whose
catalogue for 1890-1891 presented a collection–available in six sets, including

35See Giornale della Società d’Istruzione e di Educazione, IV, 1852, pp. 109-110; see also the
catolog by Paravia Elenco di libri ed oggetti per le scuole normali-magistrali, elementari, tecniche,
ginnasiali e liceali, Torino, Milano: Paravia e Comp., 1862, p. 5.
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one of stragrandissimi (gigantic sizes)–of 24 demountable geometrical solids
(Fig. 5)36. This free catalogue, of which 25,000 copies were printed, was sent to
all schools.

Fig. 5 The collection of demountable solids advertised in the Agnelli catalogue of
1890-1891

Also particularly famous

Fig. 6 The collection of crystallographic models
conserved today at the Istituto Tecnico Cavour in

Vercelli

was the collection of crys-
tallographical models con-
ceived by Quintino Sella (1827-
1884), one of the founders
of mathematical crystallog-
raphy, when he was teach-
ing geometry applied to the
arts in the 1850s at the Is-
tituto Tecnico in Turin and
later used in his classes in
crystallography at the Scuola
di Applicazione degli Ingeg-
neri (the engineering school
that later became the Politec-
nico di Torino)37. The models were built of wood by Giovanni Blotto under
Sella’s direction in two series of 200 models each, with one series coloured and
one not.38 Some of these crystallographic models are today conserved at the
Istituto Tecnico Cavour in Vercelli (Fig. 6).

The use of models for the teaching of geometry was prescribed by the
school legislation: for example Article 152 of the 1853 Regulations for Schools
for Teachers in primary and special schools of the Kingdom of Sardinia
specified that such schools were to have geometric solids as part of their

36Libri ed articoli scolastici approvati per le Scuole del Regno, Milano: Ditta Giacomo Agnelli,
1890-91, p. 84.

37See Q. Sella, Lezioni elementari di Cristallografia dettate alla Scuola d’Applicazione degli
ingegneri di Torino nel 1861-62, Torino: Briola 1867 (lithograph).

38See footnote 48. See also G. Blotto, Catalogo dei modelli in legno di meccanica, costruzioni e
cristallografia, Torino: R. Scuola d’Applicazione per gli Ingegneri, 1869, pp. 22-30.
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Fig. 7 Catalogue of school material for pre-schools and elementary schools (Paravia,
1913-1914, p. 57).

equipment39, and Art. 55 of the 1860 Regulations of the Scuola di Applicazione
degli Ingegneri in Turin appear to indicate that the “model-making workshop”
of this School was given permission to build models for teaching for secondary
schools in Piedmont40. In the Regulations (1867, 1892, 1895)41 for Scuole
normali (schools for elementary teachers training) of the Kingdom of Italy the
use of models was recommended: in particular in the 1892 and 1895 Regulations,
teachers were invited to “have the students construct the figures with cardboard,
wire, etc., in order to better derive a model from the drawings done on the
blackboard”42. Mathematics programs of 1881, 1885 and 1890 for technical
schools also invited teachers to use “large scale” models of geometric solids
for teaching geometry43. In the Paravia catalogues of school materials there

39Raccolta degli atti del governo di Sua Maestà il Re di Sardegna, 1853, N. 1599, p. 1134.
40Raccolta degli atti del governo di Sua Maestà il Re di Sardegna, 1860, N. 4338, p. 1913, 1916.

See also L. Sassi 1996, Rapporti istituzionali e legami culturali fra le scuole politecniche superiori e
gli istituti tecnici e professionali secondari nel Piemonte post-unitario, Le culture della tecnica, 1,
pp. 89-105, at p. 105.

41Raccolta ufficiale delle leggi e decreti del Regno d’Italia, 1867, vol. VII p. 256; 1892, vol. IV p.
3622; 1895, vol. IV p. 4245.

42 Raccolta ufficiale delle leggi e decreti del Regno d’Italia, 1895, vol. IV p. 4280.
43Raccolta ufficiale delle leggi e decreti del Regno d’Italia, 1881, 1885 and 1890, in Documenti
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appeared models of geometric solids first in wood or wire, and then also in
cardboard44, and models of solids for teaching descriptive geometry appeared in
collections that were increasingly varied and more beautiful up until the 1960s,
often accompanied by the line “Collection recommended by the minister for
public instruction”; for example, the catalogue of 1913-1914, in the section for
“geometrical solids in painted wire, for the study of geometrical projections”
carried an excerpt from the official bulletin of the Ministry for Education which
underlined the benefits of the collection (Fig. 7):

“The models further of-

Fig. 8 Cover of the Vallardi catalogue of 1822-1823.

fer the advantage that they
can be projected onto a sur-
face: in fact, after the model
has been placed in a certain
position, it is sufficient to
place a screen in front of it,
and by properly illuminating
the model itself, the shadow
projected by the wires that
make up its edges, will be
drawn on the screeen, thus
representing the projection
of that figure on that given
plane”45.

In the course of the twen-
tieth century, other publish-
ing houses in addition to Par-
avia also began to issue cat-
alogues of school materials
and distribute them by the
thousands to Italian schools.
One example was Antonio
Vallardi of Milan (Fig. 8), which in the 1960s also added to its catalogue models
of geometric solids in plastic46. Another example is Arnoldo Mondadori of
Verona, which began to produce this kind of catalogue in 1927-1928 and also

per la storia dell’insegnamento della matematicain Italia (ed. by L. Giacardi and R. Scoth):
ht tp W ==www:mathesistorino:i t=‹page_id D 564.

44See, for example, Catalogo del materiale scolastico e dei sussidi didattici per le scuole
elementari, Torino, Milano, Padova, Firenze, Napoli, Roma, Catania, Palermo: Paravia, 1937-1938,
pp. 62-66.

45See Catalogo del materiale scolastico per gli asili infantili e per le scuole elementari, Torino,
Roma, Milano, Firenze, Napoli, Palermo: Paravia, 1913-1914, p. 57.

46See Scuole elementari. Materiale didattico, 8, Milano: Vallardi, 1961.
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set up showrooms for this sort of materials in its offices in Verona, Rome, Milan
and Turin47.

It is thus natural that the pedagogical congresses and the various na-
tional exhibitions often featured displays of models for use in secondary
schools, as part of the section for education. For example, there were sec-
tions dedicated to education in the National Exhibition of 1858 in Turin,
where two collections (of 200 pieces each) of Sella’s wooden crystallo-
graphical models were displayed48, in the Pedagogical Congress held in
Turin in 186949, in the Italian Industrial Exhibition of 1884 in Turin50

and in the National Exhibition

Fig. 9 Plate XXXIX from Alfonso Rivelli,
Stereometria applicata allo sviluppo dei solidi

ed alla loro costruzione in carta (1897).

of 1891 in Palermo, where solids
made by the students of the Indus-
trial School “Alessandro Volta”
of Naples were exhibited51.

It is worth mentioning that
in 1897 the publisher Hoepli in
Milan printed the manual by Al-
fonso Rivelli Stereometria appli-
cata allo sviluppo dei solidi ed
alla loro costruzione in carta
addressed to secondary schools,
which contains the explanation
of how to build the various funda-
mental basic solids, but also regu-
lar star polyhedra–some of which
were quite complicated–and the
sphere.

The book is enriched by vari-
ous exercises which invite the stu-
dent to apply what he has learned
to the construction of new solids.

47See Catalogo materiali didattici, Verona: A. Mondadori, 1930, p. 9. Various of these catalogues
are available in the Museo della Scuola e del Libro per l’Infanzia (MUSLI) in Torino, and the
Museum has begun survey of didactic materials used in primary schools in Turin starting in the
mid-1800s.

48See Relazione dei giurati e giudizio della R. Camera di Agricoltura e Commercio sulla
Esposizione Nazionale di prodotti delle industrie, seguita nel 1858 in Torino, Torino: Stamperia
dell’Unione Tipografico-Editrice, 1860, p. 44.

49See R. Museo industriale italiano. Illustrazioni delle collezioni. Didattica, Torino, Napoli:
dall’Unione Tipografico-Editrice, 1869.

50La mostra didattica, Torino. L’Esposizione italiana 1884, N. 30 Torino, Milano: Roux e Favale.
51A. Rivelli, Stereometria applicata allo sviluppo dei solidi ed alla loro costruzione in carta,

Milan: Hoepli 1897, p. 10.
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The representation of geometric models and their nets also appeared in
several geometry textbooks for the lower level of secondary schools. For
example, Giuseppe Veronese in his book Nozioni di geometria intuitiva (Verona:
Drucker 1908) shows how to build the regular polyedra beginning with their
nets cut out of cardboard (pp. 94-98) because in this way, constructing and then
handling models, the student is not obliged to follow passively the reasoning
of the teacher, but can play an active part in the process of learning (p. VI).
In the textbook by Angelo Pensa, Elementi di geometria ad uso delle scuole
secondarie inferiori (Torino: Petrini, 1912), solids are represented with their
nets, but the treatment is static and does not make any mention of the actual
construction of models.

4 Corrado Segre and the use of models at the University of
Turin

As already mentioned, the most important Italian universities bought collections
of models from abroad. In Turin the first acquisitions date to 1880-1881, thanks
to Enrico D’Ovidio (1843-1933), professor of higher geometry, rector of the
University, director of the Teacher Training School and from 1883 director
of the Mathematics Library52.The first to be purchased were surface models,
in cardboard, plaster, wire, to be used for educational purposes. Documents
from the archives of the “Giuseppe Peano” Library of Mathematics, tell us
that, in January 1882, 47 plaster models by Brill of the first series I-VI, 7
cardboard models of quadric surfaces, 8 wireframe models by Björling at a total
cost of 1,265.60 Italian lire, were purchased53. In the years that followed, the
models acquired by the Mathematics Library in Turin came mainly from the
catalogues of Brill and of Schilling. Purchases are documented until 191954.
Among these also figure the five regular solids produced by Paravia. The
documentation regarding the periodical restorations (by Fratelli Pallardi, Turin)
of the models testify to the customary use of these in classes of advanced
geometry 55 and in the mathematics lectures for the Teacher Training School.
In November 1907 Corrado Segre (1863-1924) took over the direction of the
Library from D’Ovidio and held that position until his death. Segre–the founder

52E. D’Ovidio, Relazione delle cose più notevoli accadute durante l’anno scolastico 1880-81
nella R. Università di Torino, Annuario, Università di Torino, 1881-1882, pp. 3-7, cit. p. 7.

53See Inventario... dal 1 aprile 1881 al 31 marzo 1883 in Dossier Inventari Consorzio, Library
of mathematics “Giuseppe Peano”, Turin.

54See Giacardi 2003 [20] and Ferrarese 2004 [8].
55See, for example Segre’s notebooks Applicazione degli integrali Abeliani alla Geometria

(1903-04), p. 26 and Superficie del 3o ordine e curve piane del 4o ordine (1909-10), p. 176,
Fondo Segre, Library of Mathematics “Giuseppe Peano”, Turin, Quaderni 17 and 23, now in
http://www.corradosegre.unito.it/I11_20.php.
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of the Italian School of Algebraic geometry that numbers among its members
outstanding mathematicians such as Guido Castelnuovo, Francesco Severi,
Federigo Enriques, Gino Fano, Beppo Levi, Alessandro Terracini and Eugenio
Togliatti–increased the collection of models, which he used in both his courses
in higher geometry and in his lectures for the Teacher Training School:

“Corrado Segre gave classes on Tuesday, Thursday and Saturday mornings
from 10 to 11, originally on the first floor in the lecture hall that occupied the
place then used as the foyer of the Aula Magna, and later, I believe, in that
lecture hall XVII of the second floor of the University building in Via Po, whose
walls were lined with the glass cases with Brill’s geometric models”56.

In fact, like Beltrami, Segre believed that the models can sometimes smooth
the path to discovery, making it possible to “see certain properties that with
deductive reasoning alone cannot be obtained”.57 This conviction derived

Fig. 10 Some of the models from the “Giuseppe Peano” Mathematics Libray of the
University of Turin (Kummer surface, pseudosphere, Cayley surface, helicoid).

directly from his way of conceiving scientific research, in which geometric
intuition played a significant role, as he wrote to Klein:

“... the method that I like most, by my scientific inclinations, is the one
mainly due to you: the geometric, or rather, synthetic, because it makes use of
ingenious reasoning rather than lengthy calculations”58 .

This view also influenced his way to conceive the teaching of mathematics
in secondary schools, as it clearly stands out from the manuscript notebook59

of the lessons that for many years (from 1887/88 to 1890/91 and then again
from 1907/08 to 1919/20) he taught at the Teacher Training School of the
University of Turin. During his classes, in addition to dealing with elementary
mathematics from an advanced standpoint, he also addressed didactic and

56Terracini 1968 [39], p. 10.
57Segre, 1891 [37], p. 54.
58Letter from Segre to Klein, Torino 7 October 1884, in Luciano, Roero 2012 [24], p. 134.
59See C. Segre, [Appunti relativi alle lezioni tenute per la Scuola di Magistero],

Fondo Segre, Library of mathematics “Giuseppe Peano”, Turin, Quaderni 40 now in
http://www.corradosegre.unito.it/I31_40.php. On this subject see Giacardi 2003a [20].
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methodological questions and, in particular, he believed that the first approach
to mathematics should be experimental and intuitive, so that the student learns
“not only to demonstrate truths already known, but to make discoveries as
well, to solve the problems on his own”60. As far as geometry is concerned,
Segre agreed with Giovanni Vailati’s point of view, according to which the
teaching of this discipline should be experimental and operative and benefit
from teaching aids such as squared paper, drawing, and geometric models.
Segre’s notebook includes an annotated bibliography, where he lists not only
papers by Vailati and Marcolongo, but also the little book by Rivelli mentioned
above and that by Karl Giebel, Anfertigung mathematische Modelle für Schüler
mittlerer Klassen (Leipzig: Teubner 1915) on the construction of models
for secondary schools teaching. With the aim of offering teachers a book
inspired by this method, Segre invited one of his students, Luisa Virgilio,
to translate Grace and William Young’s A First Book of Geometry (1905),
in which the discovery of geometrical properties and theorems arises from
the construction and manipulation of cardboard models. By folding paper,
the authors guide the student towards simple “proofs” of some fundamental
propositions. Then, they explain in detail how to build the regular polyhedra–or
solids obtained from these by truncating them or placing two of them together
–with appropriate cardboard “plane

Fig. 11 Grace and William Young, Geometria
per i piccoli (translation by L. Viriglio), Torino:

Paravia 1911.

models” (with auxiliary faces), so
that the student

“acquires not only manual
dexterity, but complete familiar-
ity with the truths which each
model is meant to represent. Just
because he can do this by himself,
he is not taught, but learns, and
he develops what may be called
his geometrical sense”61

The use of folding or cutting
paper as part of teaching geome-
try was recommended by educators such as Pietro Pasquali (1847-1921), who
believed in the educative value of manual work and maintained that the kind of
teaching addressed to children should be fun and spontaneous. His publications
included Geometria intuitiva, ad uso delle scuole elementari superiori, tecniche,
normali e industriali. Lezioni di ritaglio geometrico (Parte I, Parma: Luigi
Battei, 1901; Parte III, Milano: A. Vallardi, 1906)62.

60Ibid., pp. 15, 16, 42.
61G.C. Young, W.H. Young, A First Book of Geometry, London: J. Dent, 1905, p. Viii.
62See for example G. Vacca 1930, Della piegatura della carta applicata alla geometria, Periodico



28 Livia Giacardi

5 The role of models in the “laboratory of mathematics”

The book by Grace and William Young was inspired by a laboratory vision of
mathematics teaching. The idea of a laboratory of mathematics63 was introduced
in the late nineteenth century by John Perry (1850-1920), a professor of
mechanics and mathematics at the Royal College of Science in London, who
proposed a new teaching method that he called ‘Practical Mathematics’, with
emphasis on experiments, measurements, data gathering, drawing, graphic
methods, and on the relationships between mathematics with physics and
other sciences. With regard to geometry, Perry criticised the Euclidean method
and suggested a teaching that was practical and experimental, heavily based
on drawing, measuring and the use of squared paper. However, in his most
famous book Elementary Practical Mathematics (London: Macmillan, 1913)
no mention is made of geometric models.

Instead, in France, after the secondary school reform of 1902, Emile Borel
(1871-1956) together with Jules Tannery (1848-1910) created the Laboratoire
d’enseignement mathématique at the Ecole Normale Supérieure. This laboratory
was aimed at training future teachers: here models in either wood or cardboard,
wire and cork were conceived and built for teaching geometry and mechanics.
The didactic uses of other instruments such as mechanical linkages, pantographs,
inversors, calculating machines, and instruments for geodesy and land surveying
were also taught64. The stage of conceiving and then constructing models was a
significant one, as Borel himself affirmed65.

Mentions of the use of models in secondary teaching can be found in
the Meraner Lehrplan (1905)66, prepared by the Unterrichtskommission der
Gesellschaft deutscher Naturforscher und Ärzte (the Teaching Committee of
the German Society of Natural Scientists and Physicians), adopting some of
the basic points of Klein’s reform movement. With regard to the teaching of
geometry, the following aspects were emphasised: the strengthening of spatial
intuition (p. 543); the use of straightedge and compass, drawing, measuring
(p. 547); the consideration of geometrical configurations as dynamic objects
(p. 548); making room for applications (p. 549); making use (Benuzung) of

di Matematiche, s. IV, X, pp. 43-50.
63For more on this subject see Giacardi 2011 [22].
64See A. Châtelet 1909, Le laboratoire d’enseignement mathématique de l’Ecole Normale

Supérieure de Paris, L’Enseignement mathématique, 11, pp. 206-210.
65É. Borel 1904, Les exercices pratiques de mathématiques dans l’enseignement secondaire.

Revue générale des sciences pures et appliquées, 15, 431-440, in Gispert 2002 [23].
66See Bericht betreffend den Unterricht in der Mathematik an den neunklassigen höheren

Lehranstalten, Zeitschrift für mathematischen und naturwissenschaftlichen Unterricht, 36, 1905,
pp. 543-553. Also in F. Klein 1907, Vorträge über den mathematischen Unterricht, Teil 1,
Leipzig: Teubner, pp. 208-219. See the English translation of the curriculum of Gymnasia in
The Mathematical Gazette, 6. 95, 1911, pp. 179-181.
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models; the coordination of planimetry and stereometry (p. 550). The importance
given by Felix Klein (1849-1925) to geometric models as an Anschauungsmittel
(visual aid) in research and teaching of mathematics is well known and studied,67

thus I only wish to point out that he frequently underlined the didactic function
of models. For example in a lecture given in 1893 in Chicago he affirmed:

“The principal effort has been to reduce the difficulty of mathematical study
by improving the seminary arrangements and equipments (sic)... Collections of
mathematical models and courses in drawing are calculated to disarm, in part
at least, the hostility directed against the excessive abstractness of the university
instruction”68.

In his book Anwendung der Differential-und Integralrechnung auf Geome-
trie (Leipzig: Teubner 1907) Klein devoted a chapter, to the Versinnlichung
idealer Gebilde durch Zeichnungen und Modelle, that is, the Concretization
of ideal objects through drawings and models (p. 424). Moreover, in his work
on elementary mathematics from an advanced standpoint, in the volume on
geometry, Klein presented various instruments, recommending that “the actual
practical demonstration” not be neglected, when such instruments are considered
in illustration of a theory69.

Klein was also involved in the reorganisation and modernisation of the
Modellkammer in Göttingen for educational purposes, in particular to foster the
Raumanschauung (spatial intuition)70, and at the meeting of the International
Commission on the Teaching of Mathematics (later ICMI) held in Brussels
in 1910 he presented the geometric models from the collections of Brill and
Schilling and illustrated their use in university teaching.71 During that same
meeting Peter Treutlein (1845-1912) presented a new series of models that were
about to be released by the Teubner publishing house, and showed their use in
secondary school72. In the catalogue–published two years later under the title
Verzeichnis mathematischer Modelle Sammlungen H. Wiener und P. Treutlein
(Leipzig: Teubner, 1912)–Treutlein devoted a section to models for teaching
plane and solid geometry in secondary schools.

In Italy it was Giovanni Vailati (1863-1909), a mathematician, a philosopher
and a member of the Peano School, who proposed an active approach to the
teaching of mathematics, in the context of the work performed for the Royal
Commission for the reform of secondary schools (1905-1909). He named this

67See Rowe 2013 [36].
68F. Klein 1894, The Evanston Colloquium Lectures on Mathematics, New York: Macmillan and

Co, pp. 108-109.
69F. Klein 1925, Elementarmathematik vom höheren Standpunkte aus, II Geometrie, Berlin:

Springer, p. 16.
70For more on this, see Bartolini Bussi et al. 2010 [15] and Schubring, 2010 [38].
71See L’Enseignement mathématique, 12, 1910, pp. 391-392.
72Ibid., p. 388.
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Fig. 12

approach ‘school as laboratory’, not in the reductive sense of a laboratory for
scientific experiments, but “as a place where the student is given the means
to train himself, under the guidance and advice of the teacher, to experiment
and resolve questions, to ... test himself in the face of obstacles and difficulties
aimed at provoking his perspicacity and cultivating his initiative”73. In particular,
according to Vailati, in the teaching of geometry the teacher should adopt
an approach that is sperimentale–operativo (experimental and active ), using
squared paper, drawing and geometric models, that is an approach directed “at
developing not only the students’ skills of observation but also those that come
into play in the construction of the figures and in comparisons between them
and their various parts, by means of measures, decompositions, movements, in
short, by means of all those procedures that can lead to affirming and verifying
their properties, which will later form the object of analysis and proof74.

73G. Vailati 1906, Idee pedagogiche di H. G. Wells, in M. Quaranta (ed), Giovanni Vailati, Scritti,
3 vols., Bologna: Forni, 1987, III, pp. 291-295, at p. 292.

74G. Vailati 1909, Sugli attuali programmi per l’insegnamento della matematica nelle scuole
secondarie italiane. In Atti del IV Congresso Internazionale dei Matematici, 6-11 aprile 1908, Roma:
Tip. Accademia dei Lincei, 482-487, pp. 484-485. It is interesting to note that in the questionnaire
that the Royal Commission sent to all schools before formulating its project for the reform of
secondary schools, there is a specific question about whether or not the school owned a collection
of models of geometric solids (see Risposte al questionario diffuso con circolare 27 marzo 1906, II
vol. of Commissione Reale per l’ordinamento degli studi secondari in Italia, 2 voll., Roma: Tip.
Cecchini, 1909, p. 48).
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So Vailati, like the Youngs, conceived a dynamic use of models in the
teaching of geometry. Various factors which cannot be further analysed here
prevented the mathematics laboratory proposed by Vailati from becoming
widespread in practice. First of all, the reform set forth by the Royal Commission
was never carried through, second, Vailati never wrote a systematic exposition
of his ideas and his premature death prevented any further developments.
Third, laboratory method-inspired textbooks were never published in Italy,
even though some authors paid attention to the geometrical constructions and to
the experiments with folded or cut paper, sand, or small models in geometry.
Fourth not all mathematicians in Italy shared Vailati’s approach to teaching of
mathematics and finally, his efforts would have been in any case nullified by
the Gentile Reform of 1923, which made the humanities the cultural axis of
national life in Italy, and especially of education (Giacardi 2011).

The only one who took up the idea of an effective laboratory-type teaching
of mathematics at secondary schools was Marcolongo who, as seen above, had
contributed to enrich the collection of models and mathematical instruments of
the Rational mechanics Institute of the University of Naples. During the National
Congress of the Mathesis (national association of mathematics teachers), held
in Naples in October 1921, Marcolongo set up an exhibition of models and
instruments, some of which were built by teachers or by students of secondary
schools. Among others, wood or cardboard models of the principal elementary
solids, the regular polyhedra, Dupin’s decomposable solids, Brill’s cardboard
models of surfaces, Vuibert’s anaglyphs, geometric figures for the stereoscope,
and more were displayed75. Marcolongo also gave a lecture (Marcolongo 1922)
on the use of educational and experimental materials in teaching practice, in
which he illustrated his “ideal laboratory of mathematics”. As he stated himself,
he always had a passion for models and believed that the geometric experiments
made by students through drawing and use of models “can not only promote
geometric invention, and the discussion of problems, but also give a sense
of confidence and mastery of the subject that is difficult to acquire by other
means” (p. 7). In a secondary school laboratory of mathematics, according to
Marcolongo, there should be first of all, the models of solids of the elementary
geometry and there should also be stereoscopes and stereoscopic figures useful
to simulate three-dimensional vision and geometric anaglyphs by Henri Vuibert,
that substantially create virtual geometric models. Moreover he was convinced
that models had to be built by the students themselves in order to be really
useful:

“Paravia sells, for a modest price, a good collection of solids in wood,
widely available but not as equally widely used, in all Italian schools. I have

75The list of models and instruments can be found in Cardone 1996 [13], pp. 148-149.
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always had little sympathy with these collections; ...they allow little or nothing
of the inside to be seen, ... Worse still, they are not built by students; they
represent an experiment already made; instead the experiment must be made
by the student, naturally under the guidance of the professor. How much to
be preferred are the models in cardboard, those made with thin wooden sticks
connected to each other with a bit of wax and fine silk threads, built by the
students!” (p. 8)... in knowing hands, the small model can be an inexhaustible
source of simple experiments, easily verified, a starting point for observation
and for the experimental discovery of new properties that the student will then
attempt to prove by means that are logically rigorous... Make it so the professor
comes to his classes armed with models, sheets of paper (even better if colored);
that he has [the students] first observe, experiment, and then deduce and ...
everyone will see ... a change of scene; the student will grow animated, will
understand and (permit me the phrase) digest immediately” (p. 9).

Marcolongo ended his lecture criticizing Italian mathematicians who too
often disdained practical and experimental aspects of their discipline:

“Our nation has had and still boasts of men of the highest merit both in the
field of pure scientific speculation and in the field of pure experimentation; it
has many, many fewer examples than other nations of that happy marriage of
high scientific speculation with experimental ability that above all England and
Germany can boast of ” (pp. 13-14).

He also observed that to reverse this trend it was necessary to start from the
secondary schools.

6 The reconstruction of the university collections of models

The golden age for the construction of models in Germany came to an end
with World War I, and in the 1930s production gradually ceased altogether,
not only for reasons of marketing, but also because of the prevailing of a
more abstract point of view in mathematical research76. In Italy after World
War II there was a revival of interest, due to the fact that in many Italian
universities the collections had been destroyed during bombardments. In 1951
the Italian Mathematical Union77, during its Fourth National Congress in
Taormina, promoted the reconstruction of the collections of surface models
in plaster or metal wire and Luigi Campedelli (1903-1978), mathematician from

76The first model constructed after the war was that of the Peano surface, and even though
there were new ones in preparation, their production was postponed due to unfavourable market
conditions. In 1932 M. Schilling informed the Mathematical Institute in Göttingen that in the last
few years no new exemplars had appeared; see Fischer 1986, p. X.

77Modelli per gli insegnamenti di Geometria e di Analisi, Bollettino della Unione Matematica
Italiana, 3, VI, 1951 [31], p. 366.
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the University of Florence, was charged of this initiative. The Mathematics
Institute of Pavia made available its rich collection of models from Germany
and some artisans in Florence looked after their reproduction78. Various Italian
universities acquired the collections, and these include the University of Turin
which also retains the related documentation. Afterwards models appeared in
some university publications such as those of Mario Villa79 or of Campedelli
80 himself, who, among other things, treated the use of geometric models
in the teaching at both secondary schools and university, in a large chapter
of the collective book Le matériel pour l’enseignement des mathématiques
(1958)81–the second promoted by la Commission Internationale pour l’Etude
et l’Amélioration de l’Enseignement des Mathématiques (CIEAEM)–which
marked an important point in the history of mathematics education. Later,
gradually models came out from the university teaching and turned into beautiful
display objects.

7 Models and a new way of teaching intuitive geometry in
secondary school

One of the chapters of the book Le matériel pour l’enseignement des math-
ématiques was written by a young teacher Emma Castelnuovo (1913-2014),
one of the daughters of Guido Castelnuovo, under the significant title L’object
et l’action dans l’enseignement de la géométrie intuitive (The object and the
action in the teaching of intuitive geometry). In the 1940s she had been able
to put into practice the ideas maintained by Vailati and Marcolongo, in fact
she had introduced and experimented in his school, the Scuola Media Tasso (a
lower secondary school) in Rome, a new way to teach intuitive geometry, a way
that she called constructive to distinguish it from the descriptive one, generally
in use up to that time. In Emma’s approach the teaching material, drawings,
models, are not considered as something static, through which the properties set
out by the teacher should be verified, but they must be constructed and handled
by the learner and thus become discovery tools. She declared:

78See Primo elenco di modelli fatti costruire presso l’Università di Firenze a cura del prof. L.
Campedelli, Bollettino della Unione Matematica Italiana, 3, VII, 1952, pp. 465-467; see also
Modelli geometrici a cura del Prof. L. Campedelli, Bollettino della Unione Matematica Italiana, 3,
VIII, 1953, p. 229, and Giacardi 2003 [20].

79See M. Villa, Lezioni di Geometria, Padova: CEDAM, vol I 1965, Tables I-XII and vol. II
Tables I-VIII with photographic reproductions of geometric models from the collection of the
Istituto di Geometria “L. Cremona” of the University of Bologna, accompanied by very detailed
captions.

80See L. Campedelli, Esercitazioni complementari di geometria, Padova, CEDAM, 1955, Tables
I-VIII; Fantasia e logica nella matematica, Milano: Feltrinelli 1966, pp. 49-50, Tables IV-VII .

81L. Campedelli, I modelli geometrici, in Il materiale per l’insegnamento della matematica,
Firenze: La Nuova Italia 1965, pp. 143-172.
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“We want to emphasize that in any case, the material must be moveable:
mobility is what in fact attracts the attention of the child, and that leads from
concrete to abstract notions; because the subject of his attention is not the
material itself but rather the transformation of the material, an operation that,
being independent from the material itself, is abstract”82.

In these words of Emma it is possible to find an echo of the ideas of her
uncle Federigo Enriques, who wrote:

“... the construction of a geometric figure requires not only the attitude of
passively seeing a model ... but also the capacity to shape a possible model, on
which are imposed, a priori, certain conditions: and this kind of constructive
activity which orders the data of observations and past experience, is not pure
imagination ... but rather true logical activity”83 .

Emma also makes reference to Maria Montessori (1870-1952), the physician
and educator who, at the beginning of the century, had introduced the use of
special materials for teaching mathematics in primary schools (rods of different
lengths, cubes, prism, etc.), and who in 1934 published the two books Psico-
aritmética (Barcelona: Araluce, 1934) and Psico-geométria (Barcelona: Araluce,
1934), in which these materials were used in such a way as to permit, as Emma
commented, not only a “grasp of various mathematical concepts by means of the
senses, but also a grasp of operations”84. This is therefore an intuitive teaching
based on a notion of intuition that is not only the “passive perception of an
image or a material, but is also construction”85.

Emma, however, also observed that “something is missing” for arriving
to the intuition proper of a mathematician because with the Montessorian
materials the mathematical experience is not practised on phenomena that vary

Fig. 13 Geometric visualisation of the cube of a binomial, from M. Montessori,
Psico-aritmética, Milano: Aldo Garzanti, 1971, pp. 334, 336.

82E. Castelnuovo, L’oggetto e l’azione nell’insegnamento della geometria intuitiva, Ibidem, pp.
41-65, at p. 58.

83F. Enriques, Insegnamento dinamico, Periodico di Matematiche 4, 1, pp. 6-16.
84E. Castelnuovo, L’insegnamento della matematica nella scuola preelementare e elementare,

Scuola e Città, 3, 1957, pp. 93-98, at pp. 94-95.
85Ibid., p. 95.
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with continuity. A peculiar characteristic of Emma’s “intuitive geometry” is in
fact the use of moveable models that can show the transformation from one
figure to another, and thus stimulate mathematical intuition. Examples that can
be cited are the parallelepiped constructed with small jointed rods86, and the
cylinder built of elastic wires that can be transformed into a cone87. These are
exercises that are possible today through the use of dynamic geometry software.
Emma was able to transform his classroom in a laboratory where everybody can
perform free individual and collective creative work that trains both the mind
and the character, anticipating some of the theoretical elaborations concerning
the laboratory of mathematics that have characterized research in education in
recent decades88.

8 A few conclusions

Further investigations into the archives of the Teacher Training Schools and the
collections of the oldest technical institutes and classical high schools, a more
extensive examination of unpublished scientific correspondence, manuscript
lessons, textbooks, treatises, etc., could perhaps provide more accurate evidence
of the use of models in mathematics teaching. However, the research carried
out up to now concerning the period in consideration, allows us to draw some
preliminary conclusions: In universities models were used as teaching aids as
testified by the significant presence of collections in various Italian universities
(F. & N. Palladino 2009 [9]). The creation of models did not greatly interest
Italian mathematicians because of the nature of their research, and no adequate
industry, comparable to that in Germany, had developed in Italy at the end
of the 1800s. In primary school and in the lower-level secondary schools the
presence of carton or wood models of elementary solids was widespread enough
(Paravia’s, Agnelli’s, Vallardi’s, Mondadori’s collections, exhibitions, etc), even
if their use seems often to be static, that is based only on the passive observation,
also after the diffusion of the methods of the école active in Italy. In upper-level
secondary schools it appears (textbooks, legislative measures, collections of
models, etc.) that the use of models–for the study of elementary and descriptive
geometry and of crystallography–was not infrequent, especially in technical and
professional schools and institutes, while in licei classici (humanistic secondary
schools) a teaching of a theoretical and abstract nature prevailed.

86E. Castelnuovo 1948 [14], Geometria intuitiva per le scuole medie inferiori, Roma: Carabba, p.
160.

87E. Castelnuovo 1963, Didattica della matematica, Firenze: La Nuova Italia, pp. 105-109.
88For more on this subject and for the connections with the international research see L. Giacardi,

R. Zan (eds.) 2013, Emma Castelnuovo. L’insegnamento come passione, La Matematica nella
Società e nella Cultura, s.I, VI, pp. 1-193.
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As the use of artefacts became accepted practice in mathematics teaching in
Italy (Emma Castelnuovo) and in other countries (Gattegno, Châtelet, Piaget,
etc.) in pre-university schools, models, in the broad sense of the term, acquired
new importance. That importance has remained today, even though dynamic
geometry software has partly replaced physical models with virtual models that
are more ductile. However, the problem of whether the processes activated by
the manipulation of software are the same as those activated by the manipulation
of physical models is still open89.
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CARON’S WOODEN MATHEMATICAL
OBJECTS

François Apéry

Abstract

We pay tribute to the mathematician-artist Joseph Caron by showing his
collection of wooden models stored in the Institute Henri Poincaré in Paris.

1 The mathematician

The collection of mathematical objects of the Institute Henri Poincaré in Paris
includes in particular a series of wooden models made by Joseph Caron (Fig. 1).
Joseph Caron entered the École Normale Supérieure in Paris in 1868. He
was appointed professor of descriptive geometry at several parisian Lycées
starting from 1871. The next year, according to the wish of Gaston Darboux,
he was designated as director of graphical works at École Normale Supérieure.
He wrote several handbooks of descriptive geometry ([2],[3],[4]). His acute
sense of geometric reality, combined with an interest in practical realizations,
stimulated the students amongst them the young Henri Lebesgue whose taste
turned therefore towards geometrical constructions. Actually, Caron produced
physical models of geometrical objects stemming from the exercices and lectures
by Darboux on curves and surfaces (see [5]), and so doing, he supplied the
Cabinet de mathématiques (a kind of Cabinet of curiosities for mathematical
beings directed by Darboux) at the Sorbonne (Fig. 2).

From 1872 to January 1915 (the first World War possibly stopped the work)
he produced more than hundred models mainly in wood. Most of them are
signed, however some of the first ones are not, maybe because nobody made
him aware of the future history of science. For instance, in 1880 he wrote an
article entitled Sur l’épure des 27 droites d’une surface du troisième degré dans
le cas où ses droites sont réelles in the Bulletin de la Société Mathématique de
France, and he is likely (this is a conjecture) the author of the model herebelow
(Fig. 3) (Man Ray took a picture of it in the 30’s). In this paper, we shall focus
on wooden models, and particularly on a series of eight models illustrating a
point in optical theory.

39
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Fig. 1 Joseph Caron 1849-1924
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Fig. 2 Cabinet de mathématiques at the Sorbonne

Fig. 3 Cubic surface with 27 real lines
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2 Selection of wooden models

Here below is a selection of wooden models made by Caron between 1910 and
1915 (Fig. 4, 5, 6, 7, 8, 9, 10).

Fig. 4 From left to right: Rational algebraic surface of degree eight generated by the
plane section of a cylinder rolling on another cylinder. Rational algebraic surface of

degree ten. Envelope of the normals for a hyperbolic paraboloid.

Fig. 5 From left to right: Algebraic surface of degree four defined by the set of points
whose sum of the distances to two lines is constant. Algebraic surface of degree three
with tetrahedral symmetry. Algebraic surface of degree four defined by the set of points

whose sum of the distances to two lines is constant.

Fig. 6 Three algebraic surfaces of degree four.



Caron’s Wooden Mathematical Objects 43

Fig. 7 From left to right: Envelope of the normals for a Plücker conoid. Algebraic
surface of degree four. Kummer surface with twelve real double points.

Fig. 8 From left to right: Set of three deformations of an ellipsoid. Two spiral surfaces
generated by circles.

Fig. 9 From left to right: Henneberg’s minimal surface. Rational surface of degree four.



44 François Apéry

Fig. 10 Two algebraic surfaces of degree four

Figure 10 requires an explanation. The left-hand model is the same as the
right one shown on figure 6. The point is that the right-hand model has been
lost. Thanks to Man Ray who photographed both models in 1935, we have a
record of its existence.

3 A series of eight models made between 1912 and 1914.

The problem stated by Darboux is as follows: find the surfaces orthogonal to
the lines three points of which of mutually constant distances moving on three
orthogonal planes (Fig. 11).

It takes its origin in optical theory: find a new geometric definition of a wave
front following the work of Malus, Dupin, Niven,.... A wave front is the surface
generated at the time t fixed, by the electromagnetic particles emitted by a body
at time t0. Therefore it is orthogonal to the rays of particles. Such a wave front
generates a caustic where the energy is concentrated. It is a surface tangent to
all the rays of particles. The eight Caron’s models below illustrate these notions
(Fig. 12).

While time is varying, the shape of the wave front changes smoothly, but
sometimes singularities pop up, that is points where the curvature is no longer
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Fig. 11 The surface (violet) is orthogonal to the moving line. The three orthogonal
planes cut two segments (blue and red) of constant lengths on the line).

Fig. 12 (three left-hand columns) Wave front at six different values of the time.
(rightmost column) Caustics.
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Fig. 13 (left) Swallowtail at the cusp of a cuspidal edge. (right) Four swallowtails on
the Caron’s model.

bounded, like on a cuspidal edge or a swallowtail (Fig. 13). At certain particular
values of the time, a singularity not existing before, suddenly appears. The
shape of the wave front changes drastically. Such a phenomenon is called a
bifurcation or a metamorphosis. Between two metamorphoses, either the global
shape remains smoothly stable, like a sphere deformed by small hollows or
bumps, or self-intersection occurs or is recomposed by surgery. The key point to
understand the evolution of the wave front consists therefore in describing self-
intersections and metamorphoses. In a generic wave front, the metamorphoses
have been classified by V.I. Arnol’d in 1974 ([1]). There are five types shown
below (Fig. 14).

Fig. 14 (left) The five metamorphoses of a generic one-parameter wave front.
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It is noticeable that the Caron’s models are precisely chosen in order to
suggest the transitions between nonequivalent shapes as shown in figures 15, 16.
Similarly, looking at other pairings of models, we can recognize a quadruple
point, the birth of a self-intersection curve, and the birth of two swallowtails
(type A3).

Fig. 15 Swallowtails hyperbolic confluence (type A3)

Fig. 16 Double swallowtail (type DC4 )
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4 The artist

The surrealists never mentionned the name of Caron, they gave him no credit
for his work even though most of the models they were using were signed. Of
course Caron was dead, but today we can’t imagine applying such a treatment
to Dali, Ernst, Man Ray and others. Maybe, Caron did not consider himself as
an artist, however his wooden models are nicely finished, the wood is polished
and varnished, the models are attached on structures to be presented on supports.
And last but not least, the surrealists touch them and insert them in their own
productions. That is a kind of definition of a piece of art. As a consequence we
should consider Joseph Caron as a mathematician-artist.
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POLYHEDRAL EVERSIONS OF THE SPHERE.
FIRST HANDMADE MODELS AND JavaView

APPLETS

Richard Denner

Abstract

This article gives the tools for self-construction of the polyhedral models
which appear during the process of everting the polyhedral sphere. It can
be understood as a pedagogical device to understand the different steps of
that process.

1 Introduction

There are problems which are real challenges. The sphere eversion problem
belongs to that category! How is it possible to exchange the internal and the
external face of a sphere without tearing or folding its surface? At first sight,
it seems impossible! But, by authorizing the surface to cross itself and by
respecting rules established by mathematicians, it becomes possible and the
eversion1 can be shown on the screen of a computer. At the conference, I
presented pictures of polyhedra imagined by the blind mathematician Bernard
Morin which illustrate the sphere eversion. The approach which is developed
here allowed the discovery of the first eversion of the cuboctahedron. We present
three introductory models which lead directly to the central stage of the eversion.

The starting point of this collection of models is a minimal Boy surface
with 9 vertices inspired by Ulrich Brehm’s work [1]. It is a non-orientable
surface which presents a threefold axis of symmetry. Some of its faces intersect
themselves giving birth to an intersection line and a triple point. The same
construction process can be applied to get a model with a fourfold symmetry
called open halfway-model. Then the surface becomes orientable and has a
quadruple point. The reader is invited to build by himself these two first models.
The third model, called closed halfway-model, reaches the necessary level of
complexity to carry out the eversion of the cuboctahedron. Handmade models,
photos in artificial light and JavaView2 applets were used to highlight the thought
of the blind mathematician.

1http://torus.math.uiuc.edu/optiverse/
2http://www.javaview.de/
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For the exchanges with Morin, we used a closed halfway-model in white
drawing paper, less aesthetic than the one presented here. Impossible to see
inside! The construction had to be improved with transparent faces in rhodoïd
and with the use of two different colours (red and blue) for each side of the
opaque faces. Many years later, the models were realized on computer with
Konrad Polthier’s software JavaView; all the details of the eversion can be shown.
The two sides of a face can be displayed with two different colours as on the
handmade models. Furthermore, JavaView is able to handle the intersections; the
triple point and the quadruple point are immediately visualized as intersections
of three or four faces.

2 Minimal polyhedral Boy surface

At the beginning of the 1980’s, during summer holidays readings I fell casually
on blind mathematician Bernard Morin’s article “Le retournement de la sphère”
[2] illustrated by Jean-Pierre Petit’s drawings in the revue Science. It aroused
my curiosity and I tried to understand step-by-step the sphere eversion3 that
Morin had imagined. A few years later (1986), I met him at the University
Louis Pasteur of Strasbourg. At the end of the formation he invited me, with
other colleagues, in his office to show us a great wire model of the Boy surface
([3], [4]). I immediately recognized – and was fascinated by – the surface I
discovered a few years earlier in his article. After our discussion, he gave me
a letter written by Ulrich Brehm which contained a short description of a Boy
surface with nine vertices. It was a variant of the minimal Boy surface conceived
by Brehm [1] which Morin has adapted to the polyhedral sphere eversion. I
tried to build it briefly and succeeded after a few days.

2.1 Construction of a polyhedral Boy surface

Boy surfaces4 are obtained by gluing together a Möbius band5 and a disk along
their boundaries. The first model we will describe is Ulrich Brehm’s polyhedron6.
Its Möbius band is a three half-turns twisted band; it is a remarkable assembly
of three concave pentagons which is explained below.

The first pentagon P0 D C0A0B0A1B1 respects the following conditions :
1. the triangle A0B1C0 is equilateral,
2. the point B0 is its orthocenter,
3. the vertex A1 is so that the quadrangle C0B0A1B1 is a parallelogram.

3http://www.lutecium.org/jp-petit/science/maths_f/Retournement_sphere/PLS_79.pdf
4http://arpam.free.fr/The%20Boy%20Surface%20as%20Architecture%20and%20Sculpture.pdf
5http://www.mathcurve.com/surfaces/mobius/mobius.shtml
6http://www.mathcurve.com/polyedres/brehm/brehm.shtml
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Fig. 1 The pentagonal face
P0 and its triangulation.
Note that the three trian-
gles in red are isosceles and
have an angle which mea-
sure is 120ı. Simple and
nice! During the deforma-
tion the pentagons can be
folded along the sides of
the triangles. This picture
is realized with LaTeX and
the packages pstricks and

pst-3dplot.

Similarly, we construct two other pentagons P1 D C1A1B1A2B2 and P2 D

C2A2B2A0B0. These 3 pentagons lean towards the faces of a regular tetrahedron
PA0A1A2.

The coordinates of the nine vertices are:
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If we consider the assembly P0[P1[P2 we get a polyhedral Möbius band.
We just have to add 7 triangles which assembly is homeomorphic to a disk (see
Fig. 2-b):
� three dorsal triangular faces Q0 D C0B1A2, Q1 D C1B2A0 and Q2 D

C2B0A1; their intersection is the triple point,
� three ventral triangular faces R0 D C0A2A0, R1 D C1A0A1 and R2 D

C2A1A2,
� and to finish the equilateral triangle A0A1A2.

Fig. 2 Construction of the Boy surface by gluing together a Möbius strip and a disk.



52 Richard Denner

Fig. 3 Assembly of the Boy surface; scale = 0.4. Notation: ˛0 D P0 \Q2 \Q1,
ˇ0 D P0\Q0\Q1. Begin to bring together Q2 and Q1, along their intersection line
Œ˛0ˇ1�; then insertQ0 into the previous assembly. The trick is easy and you will succeed
quickly. Now add the three pentagons by pushing them through their corresponding slots
Œ˛0ˇ0�, Œ˛1ˇ1� and Œ˛2ˇ2� on the dorsal faces: the Möbius strip takes its place. Then,
to finish add the ventral faces R0, R1 and R2; and if you want to close the model add
a last equilateral triangle A0A1A2 – which has the same size as the triangle PA0A1 –
as bottom face. Enjoy! An important fact to notice here is that the flexibility of the

material (paper or rhodoïd) is very useful for the assembly.
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A nice description of the construction of the Boy surface and more topolog-
ical reminders are available in Laura Gay’s internship report7 at the Institute
Camille Jordan in Lyon. See also [6] for Boy surfaces having a higher level of
symmetry.

Fig. 4 Minimal Boy surface with 9 vertices: handmade model and JavaView applet.

3 Open halfway-model

With 4 concave pentagons in vertical position we get a model with 12 vertices:

A0.3I�3I0/

B0.3I�3I6/

C0.3I�15I8//

A1.3I3I0/

B1.3I3I6/

C1.15I3I8/

A2.�3I3I0/

B2.�3I3I6/

C2.�3I15I8/

A3.�3I�3I0/

B3.�3I�3I6/

C3.�15I�3I8/

Its 12 faces arePi DCiAiBiAiC1BiC1,Qi DCiBiC1AiC2 andRi DCiAiC2Ai

where i 2 Z=4Z.

Fig. 5 Open halfway-model: the quadruple point is reachable by passing under the
pentagons.

7http://math.univ-lyon1.fr/~borrelli/Jeunes/rapport_de_stage_Laura_Gay.pdf
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3.1 Intersection line

Fig. 6 For the construction of the model – and the JavaView applet – all the coordinates
of the points which determine the self-intersection line had to be calculated by solving
several linear systems. Here we have annotated ˛0DP0\Q3\Q1, ˇ0DP0\Q0\Q1,
0 DQ0\R0\Q1 and ı0 DQ0\Q1\R1. They all belong to the plane Q1 like the

quadruple point Q (in green).

3.2 Construction of an open halfway-model

Fig. 7 The pentagonal face P0 and the ventral face R0; scaleD 0:5. They can be used
as template for the other faces Pi and Ri , i D 1; :::;3. The geometrical figures are

reproduced with GeoGebra.



Polyhedral Eversions of the Sphere 55

Fig. 8 The four dorsal faces Q0, Q1, Q2 and Q3; scaleD 0:5. They have in common
the quadruple point Q. It was crucial to find how to do this assembly.
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3.3 Tips for the mounting of the model

Don’t use simple paper, it will not work easily. Use at least drawing paper which
has a better rigidity.

Fig. 9 Open halfway model: handmade models need ability, precision and perseverance.
The pentagons are obtained by gluing together two cardboard sheets – one side in red for
the one and one side in blue for the other. To work the rhodoïd, a steel edge and a fine
cutter are necessary. To mark the rhodoïd from the plans, needles and a small hammer
were used. Faces are fixed together with adhesive tape. The self-intersection line is drawn

by using a pencil with permanent ink.

1. Take Q2 in your left hand.
2. Take Q1 in your right hand, then push Q1 into the slot Œ1ˇ1� of Q2 until

the points 1 and ˇ1 of the two faces are touching each other.
3. Now, take Q0 in your right hand. Try to insert Q0 into the slot Œ0ˇ0� of
Q1 and at the same time join Q2 and Q0 along the segment Œ˛1˛3�.

4. To finish the assembly of the quadruple point, take Q3 in your right hand.
The goal is to push Q3 through the slot Œ2ˇ3� of Q0 and at the same
time Q1 and Q3 have to be joined along the segment Œ˛0˛2�. Moreover,
Q2 and Q3 have to be joined along the segment Œ2ˇ2�!
There is a trick to do this! The flexibility of the matter here is absolutely
necessary.
The trick consists with your left hand to flatten together Q2 and Q1

between your thumb and your index finger – level with point ˇ2 – so that
they can be pushed together into the slot Œ˛0Q� of Q3 until they reach the
quadruple point Q on Q3. Then ˇ2 on Q2 can move towards ˇ2 on Q3.
˛2 on Q1 can move towards ˛2 on Q3. ˇ3 on Q3 can move towards ˇ3
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on Q0. The quadruple point Q can now be assembled by pushing all the
points in their right position.

5. Add the four pentagons.
6. Add the four ventral faces.

4 Closed halfway-model of the eversion of the cuboctahe-
dron

This model is better suited to realize the eversion than the previous model.

4.1 Description of the construction

x

y

z

A0

1

1

1

O

Q

A1

A2

A3

C0

C2

C3

P

B0

B1

B2B3

C1

Fig. 10 The pentagon P0 at the central stage; remember that Q0 D C0B1A2 and
R0 D C0A2A0.

On this third model,
1. The four pentagons lean against the lateral faces of the regular pyramid
PA0A1A2A3 where the basis is determined by the vertices A0.1I�1I0/,

A1.1I1I0/,A2.1I�1I0/ andA3.�1I�1I0/ and where the apex isP.0I0I
3

2
/.

2. Bi 2 ŒPAi � and their third coordinate is 1; furthermore Bi 2QiC1 for
i 2Z=4Z. Consequently, the accesses to the quadruple pointQ are closed
by the dorsal faces: the halfway-model is said “closed”.
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3. Let � be the point �.0I0I�3/ and V3 the plane .A3�A0/. Then the
coordinates of the vertex C0 result from C0 D P0\ .A2B3B1/\V3.

All the coordinates can then be calculated. The quadruple point is the point
Q.0I0I1/.

4.2 Coordinates
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4.3 Decomposition in several geometries with JavaView

Inside a JavaView applet, it is possible to create different geometries; the
following pictures illustrate this possibility. Pentagonal faces, dorsal faces,
and ventral faces are represented separately for a better understanding of the
model. The self-intersection line has also been added after calculation of all the
vertices. We touch here the limits of the software: it could be very useful to have
a software which allows to isolate directly the self-intersection line, specially

Fig. 11 Closed halfway-model; decomposition in different geometries with JavaView.
It is useful to locate the two perpendicular edges ŒA0A2� andŒA1A3� and the square

B0B1B2B3 (in green).
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for the study of its evolution along the eversion. This stays actually out of reach
with JavaView. The next picture shows the same handmade model photographed
in artificial light; the internal subdivision is completely observable. Just under
the quadruple point there is a chamber – completely closed towards the outside
– which has the shape of an octahedron with four ex-growths like four small
teeth. It will be interesting to follow its evolution during the eversion. The
second image represents this internal room with the self-intersection line and
the quadruple point.

Fig. 12 Closed halfway-model of the eversion of the cuboctahedron. Imagined by
Bernard Morin, this model is really the cornerstone of this study.

Fig. 13 Internal room under the quadruple point and self-intersection line of the closed
halfway-model



60 Richard Denner

See also [7] for halfway models with a higher level of symmetry; the article
is illustrated with engravings by Patrice Jeener. The display of the open and the
closed halfway-models was enhanced after mail exchanges with Jean Constant.
He made two artistic pictures8 with the use of these models. Enjoy!

5 First eversion of the cuboctahedron

The initial and the final stages of the eversion are obtained by splitting its 6
square faces with 2 orthogonal polar-edges ŒA0A2� and ŒA1A3� and with its
equator B0B1B2B3 (in green). By doing so, we get a polyhedron which have
exactly the same number of vertices .12/, edges .30/ and faces .20/ as on the
triangulated halfway-models!

Fig. 14 Initial and final models of the eversion of the cuboctahedron

On the initial model and on the final model, a same vertex has two antipodal
positions. Each triangular face is transformed in its antipodal face (see for
instance the orientation of the face A0C2B3 on the two models), so one can
observe that the orientation of the faces has changed on the final model.
Similarly, the north polar-edge ŒA1A3� on the first model is changed into the
south polar-edge ŒA1A3� on the second model. Observe that these two edges
are parallel. The same observation can be done with the south polar-edge
ŒA0A2�. On the second picture, one can also locate the final position of the
pentagon P0 D CoA0B0A1B1. Now, the four pentagons of the halfway models
are represented by the oscillating belt – composed with 12 triangles – around
the equator! The next picture illustrates the problem of the eversion of the
cuboctahedron and suggests the question: how does it work?

Bernard Morin conceived a step-by-step deformation which deforms the
halfway model by means of elementary transformations consisting in moving

8http://imaginary.org/fr/node/263
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Fig. 15 Initial, halfway and final models of the eversion of the cuboctahedron

a vertex along an edge of the polyhedron. In all, 22 steps are necessary to
transform the halfway model (step 0) into the final cuboctahedron (in blue).
But, only 6 steps are needed to obtain a model without self-intersection line!
All the models which intervene have a twofold symmetry. What can be done to
get the blue cuboctahedron (final stepC22) from the halfway model can also
be done to get the red cuboctahedron (initial step �22). So, if we consider all
the 45 models from the model �22 to the modelC22 then we have all the steps
of the eversion!

Fig. 16 First cuboctahedral eversion (Maubeuge 2000). On the picture: Philippe Char-
bonneau.
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A first description of this eversion with annotated pictures is available in my
article “Versions polyédriques du retournement de la sphère”9, Retournement
du cuboctaèdre10 I wrote for the revue L’Ouvert [8] of the IREM of Strasbourg.
In its “Retournement du cuboctaèdre” [5] François Apéry describes an other
eversion which simplifies the previous one with the help of linear interpolations.

6 Conclusion

Three models with increasing complexity mark out the way towards the central
stage of the eversion of the cuboctahedron. The halfway model represents an
ideal point to start the study of the eversion. By building some models, the
reader gives himself means to understand better what occurs during a sphere
eversion. Animations with JavaView were also realized. Three of them were
presented at the conference. This article reminds the long way of maturation and
perseverance which preceded their achievement. It is also an encouragement
to all those who think that they don’t understand maths to believe in their own
capacities and to develop them!
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COLOSSAL CARDBOARD CONSTRUCTIONS

George Hart

Abstract

Impressive, large geometric sculptures can be made very cost effectively
from cardboard by a group of people working together to cut the com-
ponents and assemble them. In the process, the participants informally
learn ideas about geometry and symmetry while developing team problem-
solving skills and seeing first-hand how mathematics can be applied to art
and design. Several examples are presented of “sculpture barn raisings” of
this type that I have designed and led.

1 Introduction

I enjoy creating geometric sculpture both to challenge myself as an artist
and because I feel mathematical art can have a pedagogical value for the
viewer [1]. Carefully observing an unusual structure can put the observer into
a mathematical mode of thinking - asking questions about the patterns and
relationships inherent in the artwork. I have found that having a group of people
help me assemble a geometric sculpture has an even stronger effect. Since
the 1990’s, I have been organizing events I call “sculpture barn raisings” in
which I design a sculpture, fabricate the components from wood, metal, or other
materials, and invite a community to participate in its construction [2][3][4]
[5][6]. Participants in these events get a hands-on introduction to the fun and
creative sides of mathematics.

As awareness of my mathematical sculpture barn raisings has spread, more
people have inquired about having me lead an event at their site. However,
it can be difficult to find sufficient funding for the cost of purchasing and
shaping permanent materials such as wood or metal. So in the past year, I have
been experimenting by developing a series of designs which are suitable for
fabrication in cardboard, which is much less expensive than wood or metal.
Although it is not as strong, I can design for its properties and it has turned out
to be sufficiently sturdy. Some of these sculptures have lasted many months and
I expect they can continue to last much longer if treated gently.

65
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2 Example Constructions

The examples presented here are all roughly spherical forms with icosahedral
symmetry, in which all the parts are identical. That is not in any way essential
to the larger ideas of this paper; it is simply my personal style in designing
these works. Others might make large cardboard constructions based on very
different mathematical ideas. My first experiment in this direction was at the
Bridges Towson conference in July, 2012. For this, I designed a 1-meter diameter
structure made of thirty painted rectangular components, each folded on a
diagonal and joined using slots. See Figure 1 and the video of its assembly [7].

Fig. 1 One-meter cardboard construction made at the Bridges Conference 2012

Although the parts are simply slotted rectangles, the coloring aspect adds
a certain richness and it was so successful that I went on to plan larger, more
complex designs. Figure 2 shows a two-meter diameter cardboard construction
built at a workshop I led at Southern Connecticut State University in October,
2012. A video of the assembly is online [8].

If there are several hours for the workshop, the participants can cut out the
cardboard parts themselves as shown in [8]. If there is only an hour or so, then
the parts need to be cut ahead of time. For cutting many identical parts, it is
efficient to make stacks of the cardboard sheets, join them with “sheet rock
screws” or clamps, and cut an entire pile at once with a saw. The part template
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Fig. 2 Two-meter cardboard construction assembled from sixty identical components

is first traced on the top sheet of the stack. A band saw is ideal for this. With
student groups, I have used a table-top scroll saw, which is not as fast as a band
saw but is easy to transport to the venue and very safe compared to other types
of saws. A spiral blade makes it easy to cut in any direction, which simplifies
the process for people who have little shop experience. Younger participants
can not use a saw, so their parts could be cut by others, perhaps ahead of time.

During the construction events, I can give detailed step-by-step instructions
on how to assemble the parts. But if there is time, I can let the participants try
to puzzle it out first. I have done this with teachers, leaving them confused for
the start of the session. I think this is good to help them sympathize with what it
is like to not understand the next step, as some of their students may sometimes
feel. I also hope everyone then enjoys the “Aha!” experience when they do begin
to understand the structure.

At some point in the workshop, I take time to explain the symmetry aspects
of the design. It is useful to see the 5-fold, 3-fold, and 2-fold symmetry axes
and use them as landmarks for adding additional parts to a partially complete
construction. The chirality issue is also important to discuss. If the parts could
be assembled in either left-handed or right-handed form, it is essential that
everyone in the group make the same choice. A fundamental skill in much
of mathematics is to learn to see patterns and extend them. In these designs,
some visualization is required when geometric patterns are sometimes rotated or
upside down from the exemplar. All of the designs shown here can be assembled
in a modular manner at first. Groups can work in parallel assembling sub-units
that combine into a larger structure. But due to the complexity of pieces getting
in the way of each other, the final steps often require that individual pieces be
inserted one at a time.
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When designing for cardboard, there are many material issues to consider.
Cardboard is available at low cost, but has relatively low strength, so is not
suitable for long thin components. Corrugated cardboard has a grain, like wood,
so folds easily in one direction while being more resistant to folding in the
orthogonal direction. Aligning the template with the grain in the best direction
can add significant strength to a part. Cutting with knives is not recommended
as it is too easy to slip and cause injury. A band saw or scroll saw is much safer
because the sharp part remains in one place. Using cardboard which is white on
one side and brown on the other adds some visual interest while only slightly
increasing the cost. In the US, a variety of sizes and thicknesses of cardboard
sheets can be ordered and delivered through uline.com. Cardboard parts can
be connected together with slots, clips, tie wraps, tape, and/or glue. Figure 3
shows a construction made from corrugated plastic election signs, which are
freely available on the day after election day. This material is like cardboard in
many ways but is slightly tougher and I used both slots and cable ties for the
connections. This construction took place at Albion College, Michigan, in 2012.
A video of its assembly shows the details, including the technique for using
sheet-rock screws to hold together the stacks for cutting [9].

Fig. 3 Corrugated plastic construction made from recycled election signs
at Albion College

Before making anything on a large scale, it it usually valuable to make a
maquette. For most of these cardboard designs, I first made a paper scale model
roughly 25 cm in diameter. The process is very useful for gaining insight into
the structure and working out an efficient assembly sequence. It no doubt leads
to a more robust final cardboard construction. Figure 4 and the video [10] show
the paper model of a design which I later made in cardboard, 1.5 meters in
diameter, with a group of teachers from Math for America in New York City.
The cardboard construction is shown in Figure 5 and a video [11].
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Fig. 4 30 cm paper model made in preparation for the large cardboard version of Fig. 5

Fig. 5 Cardboard construction made at Math for America
teacher’s workshop
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After that, I worked with students in a workshop at Aalto University in
Helsinki, Finland to make a larger version of the design from plywood sheets,
shown in Figure 6 [12]. This suggests how any of these designs might be scaled
up from paper to cardboard to larger dimensions using wood or metal, with
corresponding changes to the connection system. In the paper version the parts
are glued together; in the cardboard version the parts join with slots; in the
plywood version cable ties are used.

After creating the design above, I continued to tweak it slightly in further
versions. I changed the set of planes slightly so that the three pieces which meet
at the exterior tips are orthogonal and surround an empty, small spherical space,
as seen in the rendering of Figure 7.

Fig. 6 Plywood versions of Figs. 4 and 5 (left and right handed) at Aalto University

Fig. 7 Rendering before construction of design with orthogonal planes

This is typical of how I see a computer model on the screen when designing
and evaluating an idea, before committing to constructing it physically. I
designed the examples shown here with the aid of a sculpture CAD program
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described elsewhere [13]. It understands how to arrange planes symmetrically
in space and works with various symmetry groups. Working with it, I take into
account material properties of cardboard and the connection system I envision.

The two-meter cardboard construction of Figure 7 was built at a workshop
I led at the Canada/USA MathCamp at Colby College, Waterville, Maine in
July, 2013, shown in the video [14]. It is the first one where I tried using glue
rather than slots. Brushing a thin layer of glue on folded flaps and holding them
in place to dry with clamps takes longer than just sliding slots together, but it
results in a stronger, permanent bond. So this is now my preferred method of
joining cardboard. Participants must be cautioned not to use too much glue, or
it takes much longer to dry. I then made one additional tweak for the version of
Figure 8, built at St. Paul’s School in Concord, NH, in November, 2013.

Fig. 8 Two-meter cardboard construction assembled from sixty identical components

The change is not initially obvious in the completed structure as it only affects
the interior. An inner opening which was triangular in Figure 7 was modified to
be circular in Figure 8, in order to harmonize better with the circular exterior
features. This change is more easily seen by comparing the last two templates
of Figure 9.

Figure 9 provides templates for all the designs of this paper. Corresponding
PDF files are available on my website [7]. To reproduce any of these construc-
tions, I recommend printing the PDF at full scale and tracing it on to cardboard
to make a master template which is then traced on to all the cardboard stacks to
be cut. In some cases, marks must be made to indicate where parts are to join in
the middle of a piece. I have found it is easy to mark these locations with small
notches cut in to the edge of the template. When sawing, the notches are cut
into the individual pieces and provide very clear alignment marks for guiding
the assembly. Hopefully, the videos cited above give enough information for
others to replicate the process.
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Fig. 9 Templates for the six designs above

3 Conclusions

I hope these constructions are not just visually engaging, but are replicated as
fun challenging puzzles for developing collaborative problem-solving skills
and a wider appreciation for the value of mathematics in art and design. While
some artists are naturally possessive of their design ideas, viewing other’s
use of them as hurting their financial balance, I am happy to have others
reproduce my designs if they want to make copies. Ugly corporate sculpture or
shopping mall sculpture always depresses me when I see hundreds of people
walk past without even a glance. So I find it personally gratifying when people
not only look at my work but want to go to the effort of making their own
copy. I always give permission freely and just ask that the copy be labeled
“Design by George Hart” to distinguish it from the original instance where
I was involved in the construction. It is great to see increasing interest and
enthusiasm for mathematical art. I have additional designs on my drawing board
and events scheduled, so I will be continuing to explore these colossal cardboard
constructions in future work.
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RESILIENT CYCLIC KNOTS FOR STUDYING
OF FORM-FINDING METHODS

Dmitri Kozlov

Abstract

The paper is dedicated to pedagogical uses of cyclic periodic knots made of
resilient filaments. It describes one of my recent experimental workshops.
The aim of the work was to design and build a large-scale model of
transformable dome with tent covering and elaborate an algorithm of its
form-finding process.

In the summer of 2012 I organized a workshop for the students of Moscow
Architectural Institute. The aim of the workshop was to introduce to the students
some of the new ideas and principles of physical form-finding based upon
the properties of resilient cyclic knots. Today, when digital form-generation
methods have become predominant in architectural and design education,
the experimental exploring of alternative approaches to modeling and form-
finding is especially important for students. The combination of physical and
digital form-finding experiments helps them to understand the mathematical
background common to both of these methods.

My form-finding method derives from the fact that cyclic periodic knots
made of resilient filaments behave as kinetic form-finding structures [1]. Knots
of this type must have a large number of physically contacting crossings
functioning as the vertices of surfaces. The crossings slide along the resilient
filaments and the filaments at the same time twist around their central axis.
The waves on the filaments move and change their lengths to adapt to the
current disposition of the contact crossings. Thanks to these properties the knots
change their geometry as a whole and create vertex or point surfaces with an
arbitrary Gaussian curvature. The complicated knots of this type I designated as
NODUS-structures [2].
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Fig. 1 Stages of transformation of resilient cyclic knot of steel wire

I took as a prototype one of my steel wire NODUS-structures that is a
Turk’s-Head-like non-alternating knot with 13 loops or bights and 12 leads
(Fig. 1). Though this knot was made of a single piece of wire I proposed to the
students to build the scale model of a large transformable dome of 5 meters in
diameter with tent covering (Fig. 2).

Fig. 2 Dome and tent design

It would be difficult and inappropriate to weave such a big structure with
the single continual piece of filament material. Because we intended our model
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to copy not only the final shape of the dome but also the process of its assembly
and erection (Fig. 3), we decided to divide it into 13 modules of equal length
corresponding to 13 loops of the knot.

Fig. 3 Process of erection of the dome and tent

The material we used for the model was fiberglass wire around 4 mm in
diameter coated in orange plastic divided into 13 modules of equal length
corresponding to 13 loops of the knot. This lightweight and non-conductive
material is very suitable for the modeling of resilient cyclic knots and links
though its bending abilities are limited to some minimal radius. Values of radii
less than this minimum may result in breakage.

We started our work by devising a detailed algorithm of the assembly process
and depicting it as a series of pictures drawn on a computer. Each stage of the
algorithm consisted of the order of connection of the corresponding module
with the previous one and the order of its weaving through all of previous
modules. The passing of the module in a crossing point over and under another
module was marked as plus (+) and minus (-) signs correspondingly (Fig. 4).
This sequence of over- and undercrossings was used as a reference guide to
make the structure of the chosen non-alternating knot correctly.
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Fig. 4 Algorithm of assembly process

As a preliminary step we placed a ring in the center of the future structure
and attached it to the floor to fix the central opening of the structure and tense
it. Then we began the assembly of the structure, adding the modular elements
of the knot, forming its loops and interweaving the modules according to the
algorithm (Fig. 5).

Fig. 5 Assembling of fiberglass wire modules into knotted structure
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After we had finished all of the algorithm stages, we detached the central
ring and tested the transformation of the structure (Fig. 6). It worked similar to
the small wire model though it was not so stiff.

Fig. 6 Fixing central and peripheral openings of the structure with rings

Then we transformed our structure into the form of a truncated sphere and
added another fixing ring on the peripheral opening (Fig. 7). As a result the
whole structure became stretched inside the waves of the fiberglass wire and
compressed at the contact crossings.

Fig. 7 Finding the final form of model

The next work was in finding the form of the tent covering and in searching
of different ways how to fix the tent to the dome (Fig. 8).
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Fig. 8 Experiments with tent covering

Though for this experimental work was taken the simplest NODUS-structure
that formed parts of spherical surfaces, it would be interesting to continue
this work and try to design and build large scale structures of such forms as
hyperboloids, tori, pretzels, self crossing, one-side and knotted surfaces, because
the given method of form-finding may be extended to practically unlimited
variety of surfaces [3]. This experiment may serve as good practice of physical
modeling and form-finding for students as well as production of new pieces of
kinetic art.
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ANGEL AND DEVILS ON TRIPLY PERIODIC
POLYHEDRA

Douglas Dunham

Abstract

M.C. Escher created a version of his “Angels and Devils” pattern in each of
the three classical geometries. In this paper we extend this idea to patterns
on triply periodic polyhedra, thus filling combinatorial gaps in Escher’s
work.

1 Introduction

In this paper we show new “Angels and Devils” patterns on triply periodic
polyhedra that were inspired by related patterns of the Dutch artist M.C. Escher.
Triply periodic polyhedra have translation symmetries in three independent
directions in Euclidean 3-space. Figures 1 and 2 show finite pieces of two such
polyhedra decorated with angels and devils. Each of the polyhedra we discuss
is composed of copies of a regular polygon, with more of them around each
vertex than would be possible in the Euclidean plane, so we consider them to
be hyperbolic. These polyhedra thus have negative curvature, and are related to
regular tessellations of the hyperbolic plane. Similarly, the patterns we place on
these polyhedra are related to patterns of the hyperbolic plane that are based on
the corresponding tessellations. We first review regular hyperbolic tessellations
and triply periodic polyhedra, and the relation between them, which extends to
patterns on the respective surfaces. Then we analyze Angels and Devils patterns
on two polyhedra.

2 Regular Tessellations and Triply Periodic Polyhedra

We use the Schläfli symbol fp;qg to denote the regular tessellation formed by
regular p-sided polygons or p-gons with q of them meeting at each vertex. If
.p�2/.q�2/ > 4;fp;qg is a tessellation of the hyperbolic plane (otherwise it is
Euclidean or spherical). Figure 3 shows the tessellation {4, 5} superimposed on
a pattern of angels and devils in the Poincaré disk model of hyperbolic geometry.
We will be interested in infinite, connected semiregular triply periodic polyhedra.
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Fig. 1 Angels and devils on a piece of the {4;6} polyhedron.

Fig. 2 Angels and devils on a piece of a {4;5} polyhedron.
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Fig. 3 The {4;5} tessellation superimposed on a pattern of angels and devils.

Such a polyhedron has a p-gon for each of its faces, q p-gons around each
vertex, translation symmetries in three independent directions, and symmetry
group that is transitive on vertices—i.e. it is uniform. We extend the Schläfli
symbol fp;qg to include these polyhedra (however different polyhdera can have
the same fp;qg). Figures 1 and 2 show pieces of {4, 6} and {4, 5} polyhedra.
There is often a surface that is intermediate between triply periodic polyhedra
fp;qg and the corresponding regular tessellations fp;qg. First, these periodic
polyhedra are approximations to triply periodic minimal surfaces (TPMS).
Figure 4 shows a piece of Schoen’s I-WP TPMS that corresponds to the {4,
5} polyhedron of Figure 2 [2]. Second, each smooth surface has a universal
covering surface: a simply connected surface (the sphere, Euclidean plane, or
hyperbolic plane) with a covering map onto the original surface. Since each
TPMS has negative curvature (except for possible isolated points), its universal
covering surface does too, and thus has the same large-scale geometry as the
hyperbolic plane. In the same vein, we might call a hyperbolic pattern based on
the tessellation fp;qg the “universal covering pattern” for the related pattern on
the polyhedron fp;qg. The pattern of Figure 3 is the universal covering pattern
for Figures 2 and 6.



84 Douglas Dunham

Fig. 4 A piece of Schoen’s I-WP TPMS which corresponds to the {4;5} polyhedron.

3 Angels and Devils on the {4,5} and {4,6} Polyhedra

Figure 1 shows the {4, 6} polyhedron, the simplest triply periodic polyhedron,
which is based on the tessellation of 3-space by cubes. The solid within the
{4, 6} consists of invisible “hub” cubes that are connected by (visible) “strut”
cubes, each hub having a strut on each face, and each strut connecting two hubs.
The Schwarz P-surface is the corresponding TPMS – it is basically a smoothed
out version of the {4, 6} polyhedron [2].

Figure 2 shows a piece of a {4, 5} polyhedron, which can also be described
by the solid within it. That solid consists of truncated octahedral hubs (the
square faces of which are visible) with their hexagonal faces connected by
regular hexahedral prisms as struts. Figure 2 shows one hub and its 8 connecting
struts. As mentioned above, Schoen’s I-WP surface is the corresponding TPMS.
Figure 5 shows a {4, 5} polyhedron that is actually the same polyhedral surface
as that of Figure 2 [1]; Figure 2 shows the outside and Figure 5 shows its
“complement”, the inside. The Figure 5 polyhedron is made up of cross-shaped
units (shown in different colors), each of which is a cube with four equilateral
triangular prisms on it. Figure 6 shows an angels and devils pattern on that
polyhedron.
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Fig. 5 A piece of the {4;5} polyhedron that is the “complement” polyhedron to that of
Figure 2.

Fig. 6 A piece of the {4;5} polyhedron that is the “complement” polyhedron to that of
Figure 2.
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Escher’s “Angels and Devils” pattern, the only one he realized in each of
the three classical geometries, were based on the {4, 3} (spherical), {4, 4}
(Euclidean plane), and {6, 4} (hyperbolic) tessellations. The patterned {4, 5}
polyhedra of Figures 1 and 6 thus fill a “gap” between Escher’s {4, 4} pattern
and the patterned {4, 6} polyhedron of Figure 1.
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NONLINEAR MUSICAL ANALYSIS AND
COMPOSITION

Renato Colucci, Gerardo R. Chacón,
Juan Sebastian Leguizamon C.

Abstract

We discuss the application of Nonlinear time series analysis in the context
of music analysis. We comment the results presented in [4] and give some
ideas for further investigation (see [5]). Moreover we show how these
techniques can be used to produced original music with both artistic and
pedagogical purposes.

1 Introduction

The methods of non linear time series analysis has been widely used in studying
many natural and social phenomena (see for example [7], [11] and [9]). The
most important tool is Takens’ theorem (see [12]) that lets us reconstruct the
whole phase space by considering the data in a proper m-dimensional Euclidian
space. If we denote by fxig

N
iD0 the original data set then the m dimensional

vectors, called m-histories, are constructed in the following way:

h1 D .x0; : : : ;xm�1/

� � �

hN�mC1 D .xN�mC1; : : : ;xN /

The dynamics on the pseudo-phase space H D fhgN�mC1
iD1 is diffeomorphic to

the dynamics on the true attractor of the system. Then analyzing the data on
the embedding space is it possible to obtain the estimation of many important
quantities such as the dimension of correlation or Liapunov exponents. In [8] and
[4] a way to apply these techniques has been proposed in the context of musical
analysis (see section 2). In the present paper we continue the implementation
of nonlinear techniques in the context of music. In particular we give some
examples of application of prediction algorithm to simulate a musical styles
(see section 3). In section 4 we show that prediction algorithm can also be
used to produce original music. In particular we suggest a method of random
interpolation of a set of m-histories with another set corresponding to two
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different composition (here we chose Prelude of Suite I for Cello by J.S. Bach
and Sequenza IXb for Alto Saxophone by L. Berio). The new set of m-histories
will be used to make prediction and the result will be some mixture of the two
compositional styles. There are many possibilities to apply this methods to
compose original music both for artistic and pedagogical purposes. In the last
section we give some remarks and suggestions for future investigations.

2 Discussion of previous results

In [4] the authors analyzed three different compositions and discussed the
technical difficulties while applying these techniques in the context of musical
analysis. The compositions analyzed, Prelude of Suite n. 1 for cello solo (1720-
1721) by J.S. Bach (1685-1750) (see [13]), Syrinx (1913) by C. Debussy (1862-
1918) (see [6]) and Tenor Saxophone Solo from Acknowledgement (from the
Album A Love Supreme, 1964) by J. Coltrane (1926-1967) (see [3]) are all
compositions written for an instrument. The authors of the paper made an
identification of a solo musical composition (see [8]) with a time series and
apply some time series techniques in order to analyze them. As a summary of
the results of [4], the three different compositions written using different styles
such Baroque Counterpoint (Bach), Free Modern Composition (Debussy) and
Modal Jazz (Coltrane), satisfy the following inequalities concerning embedding
dimension (m) and correlation dimension (D):

mDebussy �mBach <mColtrane; (8.1)

DDebussy <DBach <DColtrane: (8.2)

This suggest that the music of John Coltrane can be described by using more
patterns/variable with respect to music of Debussy but looking at the inequality
regarding Liapunov exponents (L):

LBach < LColtrane < LDebussy; (8.3)

we guess that the patterns of Debussy are arranged in a more unpredictable way
with respect to that of Coltrane’s.
Then it is natural to ask if the above reasonable results are due only to the great
difference between the three compositions or if these methods really work in
general cases. It could be interesting to ask if it is possible to catalogue music
by these nonlinear techniques depending on styles, genres, composers, etc.

Here we present, as a first approach, the analysis of the whole Suite No. 1
in G major, BWV 1007 from “Six suites for Cello” by Johann Sebastian (1717-
1723). The structure of the movements of the suite are the following:
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� Prelude;
� Allemande;
� Courante;
� Sarabande;
� Minuet;
� Gigue.

In table 2 we represent the values of the standard deviation (� ), of the embedding
dimension (m), correlation dimension (D) and Liapunov Exponents (L) of the
six movements of the first suite.

Movements � m D L
1 5.62476483 7 2,405810844 0,245919883
2 5,59381701 2,626908577 0,194686888
3 5,33603512 2,276816981 0,12682068
4 4,47777764 1,635210943 0,059480429
5 5,531770331 2,045760793 0,160438678
6 4,662153419 2,429508864 0,125400802
Mean Value 5,2043863920 2,2366695 0,15212456

We observe that with the exception of the fourth movement, the other
movements share similar values of the analyzed quantities. A deeper analysis
on the problem of cataloguing music can be find in [5] where the authors use
different techniques such as recurrence analysis and pattern analysis.

3 Prediction algorithm

The most important goal of the nonlinear time series analysis is to make
predictions in order to understand the future behavior of a complex system. In
the context of music analysis it is interesting to ask if it has sense to consider a
prediction algorithm for a musical composition. In our opinion those algorithms
could be used to simulate a musical style or to produce new music.
We give an example of that for the music of Coltrane, a complete study of
problem of prediction can be found in [5].
We consider the following algorithm (see [1])

ym
tC1 D

NX
iD1

�
Oym
kC1� Oy

m
k Cy

m
t

�
!k.y

m
t ; Oy

m
k /; (8.4)

where ym
t is the last m�history of our data set, ym

tC1 is the m�history that we
want to predict, the points

Oym
k 2 B".y

m
t /; k D 1; : : : ;N; (8.5)
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are the neighbors of ym
t contained in the neighborhood B" and Oym

kC1
are the

next points of Oym
k

. The weight functions are given by the following expression

!k.a;b/D
Kh.ka�bk/PN

kD1Kh.ka�bk/
; (8.6)

with the Gaussian Kernel:

Kh.x/D
1

h
K
�x
h

�
; K.x/D

1
p
2�
e�

x2

2 : (8.7)

Once a set of m�histories has been produced it is possible to construct the one
dimensional prediction by considering only the first element of each m�history.
In figure 1 we represent a portion of the Coltrane’s solo from bar 97 to bar 104
while in figure 2 we present a prediction with "D 30 and hD 1

2
.

Fig. 1 Coltrane’s Solo

Fig. 2 Prediction with "D 30 and hD 1
2

We consider the algorithm of prediction only for the tones and put almost
all the original values of the tones (for prediction for both tones and values see
[5]). We observe that the most used scale by Coltrane is the Pentatonic of G
minor while in the prediction all the predicted tones belong to the Pentatonic
scale of C minor which is very close to that of G minor, moreover Coltrane uses
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this pentatonic scale during the continuation of his solo. These simple examples
show that prediction algorithm also work in the context of music.

4 Original Music Production

In this section we give an example of how to use these prediction algorithm
to create new music. The possibilities of the algorithms have only the limits
of author’s creativity. We propose a method based on the interpolation of one
composition with another. We consider the Sequenza IXb by L. Berio for Alto
Saxophone and again The prelude of the first Cello Suite by J.S. Bach. We cut
the Sequenza at part D (included) since this is an homogeneous part (see [10])
and the embedding dimension results to be 5. Then we consider the 5-histories
of the Prelude, we note that the embedding dimension is 7. We interpolate
randomly the 5-histories of the Sequenza with the 5-history of the prelude in the
following way: we consider the first 5-histories of Sequenza and the algorithm
randomly decides to insert the first 5-history of Bach or to continues with the
second 5-history of Sequenza. We note that this procedure mixes the 5-history
without changing the order in which the histories of Bach and Berio appear.
When the new set of 5-history is constructed we are ready to make a prediction.
Since almost all the tones of the Prelude have the same value of 16th note,
for simplicity in this case we predict only the pitch and put all 16th note as
in the prelude. A simple way to introduce variations in the rhythm, without
using prediction algorithms for the duration of the tones, is to randomly assign
values to the pitches. This method is more suitable for contemporary music,
while for classical music it would be necessary to use more restrictions. It is
possible to use also irregular groups in the style of Sequenza but the algorithm
that assigns values should need some constraints. More examples and discussion
on prediction of the values can be find in [5].
In figure 3 below we represent the result of the random interpolation (in a five
dimensional embedding space) of the Sequenza with the Prelude using hD 0:5
and "D 30. It is interesting to note that if we want to change the roles of the two
compositions we have to change the embedding space. We randomly interpolate
the 7-histories of the Prelude with 7-histories of the Sequenza, the result is
presented in figure 4 below. Again we use hD 0:5 and "D 30.

The production of new music will require more investigations and the
experimentation of musicians. We remark that it is possible to interpolate a
composition with original (written) or random material, or in the contrary, we
could start from some original or random material and interpolate. This method
would work also for live performances in which, due to the random interpolation,
a different musical sheet could be produced at each concert.
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Fig. 3 Random interpolation of the Sequenza IXb using the Prelude of Suite I

5 Conclusion

In the present work we have discussed the results of [4] and gave some previews
of the investigations about cataloguing and simulating musical styles which are
the main topics analyzed in the forthcoming paper [5]. Moreover we give some
examples of how these methods can be used in a variety of ways to produce
original music. Another technique from the nonlinear time series analysis that
we consider could be useful for cataloguing and producing original music
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Fig. 4 Random interpolation of the Prelude of Suite I using Sequenza IXb

is given by the pattern recognition algorithms. In particular, we consider the
machine learning method to recognize patterns (see for example [2]) should be
explored in this setting and combined with the other techniques.
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EXPERIMENTAL MATHEMATICS

Francesco De Comité

Abstract

Computer tools (ray-tracing software, 3D modeler), new technologies
(laser cutting, 3D printing), new communities (fablabs), increasing com-
puting power and improved graphic screens: all together make it possible
for the mathematicians to give life to their ideas. Moreover, having de-
scribed basic mathematical objects, one can play with their parameters
and just see what arises. This paper illustrates this fact through several
examples: anamorphoses, cardioid based structures and circle packings.

1 Introduction

We can assume, with strong confidence, that Gaston Julia (1893-1978) never saw
the image of a Julia set. Felix Klein (1849-1925) and Robert Fricke (1861-1930)
drew only one representation of a limit set [8]. Some thirty years ago, on the
1st of March 1980, Benoît Mandelbrot first saw a blury image of the fractal
set christened after him appearing on his printer. He then spent several weeks
making new images, to understand the shape he just discovered [14]. Nowadays,
anyone can write or download a program or a smartphone application, running
orders of magnitude faster, zooming to scales out of reach at Mandelbrot’s time.
Playing with mathematical objects is easier today, scientists can experiment
more sophisticated structures in reasonable time. Any mathematician with
elementary programming skills can imagine a new shape, a new curve, translate
it into a program and see it appearing within seconds on his high resolution
screen, using a standard computer. Exploring the field of mathematical objects
becomes easy and affordable due to several factors:

� The increasing power of processors, which makes calculations easier to
perform.

� High resolution of computer screens, which gives precise and realistic
images.

� High level programming languages which let the programmer focus on
the heart of the problem to solve.
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� Specialized computer applications like ray-tracing software or 3D model-
ers, when mastered, can also alleviate the mathematician’s work. Those
softwares are available in open-source and free versions.

� Laser-cutting machines, 3D printers are valuable tools to help making
real-world versions of mathematical shapes.

In the rest of the paper, I will present several categories of works achieved
by using part or all of those tools, and I try to show how, from the initial object I
wanted to visualize, I was able to tune the parameters in order to obtain a whole
family of related objects.

2 Anamorphoses

2.1 Definition

Anamorphoses are distorted images (resp. objects) needing to be seen through
a mirror, and from a specific point of view, in order to reconstruct the original
image (resp. objects). Anamorphoses appeared in Europe at the time of Re-
naissance, when artists and scientists discovered the laws of perspective, and
independently in China during the XVIth century. A complete history of anamor-
phosis can be found in Jurgis Baltrus̆aitis’ Anamorphoses ou Thaumaturgus
opticus [3].

There are different methods for producing anamorphoses, either analytical,
empirical or hybrid.

Fig. 1 Anamorphosis in an egg-shaped mirror
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Fig. 2 Distorted image on a cylinder

2.2 A Computer Method and its Evolution

In [5], I described a procedure for testing and constructing catoptric anamor-
phoses in the general case. The setting-up of an anamorphosis needs three items:
a mirror, an observer, and the locus where the distorted image lays, which I
will name surface of distortion. This method can compute the distorted image
corresponding to an anamorphosis setting and print it, in order to obtain a real
size version of the anamorphosis. In [5], the surface of distortion was either
a flat or a developable surface. Extensions of the method can also help define
anamorphoses where the surface of distortion is no longer developable: we then
lose the possibility of printing the distorted design, but are still able to achieve
it by directly drawing on the surface, using the information returned by the
program. In October 2010, James Hopkins, a British sculptor [9], asked me
whether it would be possible to compute the shape of a three-dimensional wired
form sculpture which would represent a chair when seen through a spherical
mirror. This led to an improvement of the original method [6], where the surface
of distortion is replaced with a set of volumes of distortion. The new method
computes the distorted image of a line (either a line segment or a circle ark),
and gathers all those images in a single three-dimensional anamorphic sculpture.
Then exporting the results of those computation to a file, we can build a real-
world three-dimensional object, using 3D printing techniques. Figure 3 shows
an example of this process. Yet another improvement of the method is under de-
velopment, in collaboration with James Hopkins, allowing the definition of 3D
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distortion of plain quadrilaterals (see figure 4). The related real-world sculpture
is under construction (november 2013).

In conclusion, when a method, and the tools used in it are well mastered,
improvements and evolutions are easy to implement. One can imagine possible
improvements, then test them first virtually and validate them with real-world
achievements.

Fig. 3 3D anamorphic sculpture

Fig. 4 Distorted quadrilaterals (preliminary try)
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3 Cardioidal variations

The cardioid is a very old and known curve, which can be defined in several
manners. Pedoe describes a method for constructing a cardioid as the envelop
of a set of circles:

� Draw a circle and choose a point on its circumference.

� Draw circles with centers lying on the initial circle, and passing through
the chosen point.

� The envelop of this set of circles is a cardioid [12] (see figure 5).

Fig. 5 Pedoe method for cardioid Fig. 6 String method for cardioid

But the result is flat. What if we rotate each circle in the third dimension,
with an angle depending on its radius ? The function relying the rotation angle
to the radius can be arbitrary, and each choice defines a different final shape
(see figure 7). The shape is not difficult to code, once drawn. We can output
the information (circle centers, radii, angles) and use that to obtain a real three-
dimensional version of the virtual drawing. The experience of turning this 3D
cardioid in your hands is still stronger than seeing it on the screen. Each angle
of vision makes it look different, and the observer find new symmetries each
time he moves it.

Playing with the function defining the rotation of each elementary circle,
one can obtain an infinity of different shapes, all very different from each other.
The best way to investigate this family of shape is either intensive tests, or
animations. Intuition alone may miss interesting structures.
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Fig. 7 Variation from Pedoe method Fig. 8 Variation from string method

Another way to draw a cardioid is the following algorithm, whom result is
shown on figure 6:

� Draw a circle.

� All around the circumference of this circle, draw n equidistant points.

� Numbering those points 1 � � � n, draw line between points i and .2� i/
mod(n)

Once again, the result is flat: we can now try to replace each line segment with
a torus whose diameter equals the length of the segment, and that produces the
object of figure 8. Surprisingly, the external shape of this object is a simple
sphere. Simple mathematical reasoning might prove this, but the fact that it
was discovered while drawing it is a strong argument in favour of experimental
mathematics. A lot of explorations are still to be done: for example, what
if the couple of points defining a line segment is changed from .i;2� i/ to
.k1� i;k2� i/ ? There is so much to explore that even those easy programming
tasks are not yet achieved.

4 Circle packings

Circle packing can be seen as the art of placing tangent circles on the plane, leav-
ing as little unoccupied space as possible. Circle packing has been (re)introduced
by William Thurston [15] in 1985. Kenneth Stephenson developed its study
in [13]. In this section, I will show how one can use different ways of pro-
ducing circle packings, together with different geometric transformations that
preserve the tangency property of the arrangement, in order to produce elegant
and appealing images. For sake of aesthetical homogeneity, I will only consider
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Fig. 9 Circle packing experiments

packings of tangent circles included in one external circle, also part of the
tangency pattern. I mainly use two operations: defining Steiner chains, and
using “Apollonian Gasketization” to fill the gaps between the generated circles.
At Bridges 2012, Inglis and Kaplan [10] presented a method to produce fractal
circular rings of tangent circles, where spaces are filled with Apollonian circles.
Their algorithm shares some similarity with ours, but is in some ways more
restrictive.

4.1 Steiner Chains

Steiner chains are chains of tangent circles, each of those circles also tangent
to two fixed and non intersecting circles. Steiner chains are obtained by first
constructing the easy solution: n circles forming a chain between two concentric
circles, then using a circle inversion to distort the arrangement (since circle
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inversion preserves tangency). The way one chooses the inverting circle is a
parameter of the design, which can be used to create an infinity of different
shapes. The number n is also a parameter that leads to different solutions.

4.2 Apollonian Gasket

Apollonian gaskets are obtained by recursively filling the gaps between three
tangent circles with a circle tangent to all those three circles. The standard
Apollonian Gasket starts with three equal circles inside a fourth one. In our
procedure, we consider filling the gaps between any set of three tangent circles.

4.3 Putting Things Together

The procedure used to generate circle packing patterns can be summarized
in one sentence: “Each time you generate a new circle, fill it with a Steiner
chain, then fill the gaps by mean of gasketization”. Each steinerization might
have its own parameters. Such a simple construction rule produces a very
rich set of different patterns. We can still add more diversity by applying at
the end of the procedure a geometric transform that preserves the tangency
property, like Möbius transform1 or circle inversion. A complete exploration of
the graphical potentialities of Möbius transforms can be found in Mumford’s
Indra’s Pearls [11]. Figure 9 shows some variants. More are available in [7], and
still more of them are to be discovered.

5 Conclusion

Using those three examples, I wanted to show that wide fields of mathematical
art can be cleared by random exploration. The programmer can launch his
program, looking at the image appearing on his screen. He can first compute a
low resolution image, or abort the drawing if he is not satisfied with what he sees,
refine the parameters of the object, and launch again. All this in seconds. One
can even imagine a cooperative and parallel exploration: by making available
a smartphone application where the user can launch a design, with his own
parameters, collect the results, ask people to rate them. This could reveal hidden
design rules and interesting properties. Several authors developped dedicated
softwares to explore mathematical objects. One can cite Ken Stephenson [2]
in the field of circle packings, and Phillip Kent [1] for conical, cylindrical and
pyramidal anamorphoses.

1Möbius transforms were in fact first described by Euler in Acta Acta academiae scientiarum
Petropolitanae, in 1777 (see [4])
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INVERTING BEAUTY

Renzo Caddeo, Gregorio Franzoni, Paola Piu

Abstract

In this paper we give a simple application of spherical inversion, the most
elementary among the non elementary geometric transformations, and of
some of its generalizations.

The principal motivation was an attempt to increase the interest for
mathematics in high school students by proposing an easy but mathemat-
ically rigorous technique for creating new images, new shapes and, by
means of 3D printing, new nice material objects. Also in order to put once
again in evidence the possibility that mathematics can have something in
common with Nature and the Arts.

Amongst the generalizations of inversion (see [Bl], [Hi], [Ep], [S1]),
we find ideally more close to our point of view the hyperbolic inversion
due to G. V. Schiaparelli1, an important Italian astronomer not as much
known as a geometer, who in [S2], in 1898, tried to represent organic
forms and the change from one species to another through geometry (see,
e.g., [Gi-Gu]).

1 Introduction

Nature offers our eyes every day extraordinarily beautiful forms, that look
always the same and always new, but that never fail to amaze us. An example is
represented by flowers: the pleasure we get from them is one of the most intense.
Maybe is this one of the reasons why artists often give in to the temptation to
reproduce them, sometimes emulating, sometimes interpreting nature, that is,
deforming their shape.

Everyone has their own preferences. Many have predilection for roses, but
some find calla-lilies (or arum lilies) more fascinating, because of their slender
elegance, which firmly soars spiraling upward. It’s not hard to find callas in
vases and gardens, or in paintings. A bouquet of callas, as that in Fig.1, is an

1Giovanni Virginio Schiaparelli (1835-1910), astronomer and historian of science, senator
of Kingdom of Italy, Bruce and Royal Astronomical Society gold medalist, discovered groups
of straight lines (canals) on Mars, raising doubts on existence of life on that planet, and gave
an explication of shooting stars as residues of comets. The relationship between his hyperbolic
transformation and standard inversion was observed by Luigi Cremona.

105
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Fig. 1 Bouquet of calla-lilies

interesting subject to several painters, who may have been attracted by their
geometric profile and their nearly evanescence.

Drawings and paintings with callas as subject can be easily found on the net,
taken from museums and from more or less important art galleries.

Fig. 2 (a) Calla-lilies (b) Great Peacock Moth

In Fig.2a and Fig.2b we have reproduced a watercolour painting by Stanis
Dessy, a Sardinian artist (1900-1986), and a Van Gogh’s picture.

It is interesting to know that also in mathematics one can find a calla: the
extremely elegant and beautiful surface which bears her discoverer’s name,
Ulisse Dini, (see [Di]). It can be drawn with Mathematica (see for example
[Ca-Gr]) by using the parametrization given by the map
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X.u;v/D
n
b sinusinv;b sinucosv;b

�
cosuC ln

h
tan
�u
2

�i�
C cv

o
: (10.1)

For aD 32, b D 5, u 2 Œ�3�;�0:5� and v 2 Œ0:02;�=2�0:02�, we get

Fig. 3 Dini’s Surface Fig. 4 Pseudosphere

Dini’s surface can be obtained through an isometric deformation from the
Eugenio Beltrami’s Pseudosphere 2, which is parametrized by

X.u;v/D
n
sinusinv;sinucosv;cosuC ln

h
tan
�u
2

�io
:

Therefore these two surfaces, even though it does not appear evident at first
glance, share the property of being curved in the same way in every point. More
precisely, they have Gauss curvature K constant and equal to �1.

One may wonder whether it is possible to create by means of mathematical
tools a composition resembling any of those in Fig.1 and in Fig.2. In order to
draw a bouquet from the Dini’s surface, it is necessary to find a way of bending
it in a proper way, to obtain a visually pleasing composition.

It is important to observe that this can be done through a spherical inversion.
This is a non elementary (i.e. non linear) geometric transformation, in fact one
of the simplest, besides rigid motions (the congruences) of Euclidean geometry.

In the following sections we will briefly recall the notion of inversion, some
of its well known properties and some generalizations, not as much well known.
But first of all we show what our bunch of “flowers” looks like:

2Section 2 of Livia Giacardi’s interesting paper [Gi] of 2013 ESMA proceedings is devoted to
the Beltrami’s cardboard model of this pseudo spherical surface.
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Fig. 5 A Dini bouquet

This composition has been realized by putting together one Dini’s surface
and four of its inverses, obtained by inverting Dini’s surface with respect to
the two spheres of radius 150 and centered in the points .�0:63;150;�162/,
and .�0:63;�150;�162/, and to the two spheres of radius 280 with centers in
.�0:63;280;�162/ and .�0:63;�280;�162/.

2 Inversion in Circles

There are several kinds of inversion (see [Hi]); among them, the inversion with
respect to a circle is the simplest one. In Sect.6 we shall mention some other
inversions; let us begin with the circular inversion.

Let  be a circle of radius r and center C . By definition, for any point
P ¤ C in the plane of  , the inverse P 0 of P with respect to  is the unique
point P 0 on the half-line containing C and P such that

CP �CP 0 D r2: (10.2)
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The number r2 is the power of inversion.
From the definition it is easy to determine the mutual position of P and P 0

with respect to  :
1. P D P 0 if and only if P lies on the circle  .
2. If P is inside  , then P 0 is outside  , and P 0 is inside  if P is outside.
3. .P 0/0 D P (that is, the inverse of the inverse of P is P ).
Moreover, there are very simple geometric constructions to find the inverse

P 0 of P ¤ C . Besides the trivial case, when P belongs to  , we have two cases:
1. The point P is inside  . Let TQ be the chord of  through P perpendic-

ular to
��!
CP . Then the inverse P 0 of P is the point of intersection of the

tangents to  at T and Q.
2. The point P is outside  . Let R be the midpoint of the segment CP ,

and � the circle with center R and radius CRD PR. Then � intersects 
in T and Q, PT and PQ are tangent to  , and the inverse P 0 of P is the
intersection of TQ and CP .

Once we have learnt how to find the inverse of a given point, it is interesting
to see how are the inverses of sets of points. If the figure to invert is a circle, the
result, simple and surprising, is a Steiner’s theorem that in [Pa], p.178, is called
the fundamental theorem of inversion:

Theorem 2.1 The inverse of a circle is a circle.

More precisely one has the following two cases:
1. Let  be a circle of radius r and center C , ı a circle of radius s and center
Q. Assume C outside ı and let k be the power of C with respect to ı.
Let f the dilation with center C and ratio �D r2=k. Then the image ı0

of ı under inversion in  is the circle of radius � � s whose center is the
image f .Q/ of Q.

2. Let ı be a circle passing through the center C of a circle  . The image of
ı minus C under inversion in  is a line ` not through of the center C ;
the line ` is parallel to the tangent to ı at C .



110 Renzo Caddeo, Gregorio Franzoni, Paola Piu

It is also well worth considering inversions of other conic sections. We must
here remark that, to represent with the program Mathematica the inverse of a
parametrized curve, it is convenient to translate condition (10.2) in the formulas
relating the coordinates of a point P and those of its inverse. These formulas are
obtained by observing that, when the point P describes the curve ˛, the inverse
curve ˛0, is drawn by the point P 0 given by

P 0 D C C
r2.P �C/

jjP �C jj2
: (10.3)

Here we have denoted by jjP �C jj the length of the segment CP .
Let us show (in red) some inverse curves of conics. Inversion of a parabola

with respect to circles centered at its vertex and its focus gives, respectively, a
cissoid of Diocles and a cardioid:

Fig. 6 A parabola with its inverse with respect to circles centered in its vertex (left) and
in its focus (right)
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For an ellipse, taking the circle of inversion centered in a vertex, in the
center and in a focus of the ellipse, we obtain respectively a witch of Agnesi, a
lemniscate of Booth and a limaçon of Pascal

Fig. 7 An ellipse with its inverses with respect to circles centered in one of its vertices
(left), in the center (middle) and in one of its foci (right)

When the conic we want to invert is a hyperbola and the circles of inversion
are chosen as for the above ellipse, we get a strophoid, a lemniscate of Bernoulli
and a limaçon of Pascal, respectively.

Fig. 8 A hyperbola with its inverses with respect to circles centered in one of its vertices
(left), in its center (middle) and in one of its foci (right)

But it is also interesting to see in what way the inversion deforms triangles
and squares.

Fig. 9 Inverses of a triangle contained in (left) and containing (right) the circle of
inversion
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Fig. 10 Inverses of a square with respect to a circle inside the square, and to a circle
outside the square

3 Inversions in three dimensions

Let us now consider the inversion with respect to a sphere, to explain the way
Fig.5 was obtained.

Conditions (10.2) and (10.3) do not change when we want to invert a point
P ¤O in ordinary space with respect to a sphere centered in O and of radius r .
But now, besides the curves, we can invert planes, spheres, quadrics and more
complicated surfaces, as it can be seen in [Ca-Gr].

For example, in Fig.11 are represented the Möbius strip

X.u;v/D
n
cosuCv cos

u

2
cosu;sinuCv cos

u

2
sinu;v sin

u

2

o
and its inverse with respect to the sphere of radius 2 centered in the origin:

Fig. 11 A Möbius strip with its inverse

In Fig.12 we can see a torus and, on the right, one of the famous Dupin
cyclides, which held also J. C. Maxwell’s interest (see [Mx1]). This cyclide can
be obtained by inverting the torus

X.u;v/D fcosu.8C3cosv/;sinu.8C3cosv/;3sinvg

with respect to the sphere centered in the point C D .0;2;0/ and of radius 2.
Now we draw in Fig.13 two of the surfaces we need to compose the image

in Fig.5.
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Fig. 12 A torus with its inverse

The inverses of the Dini’s surface given by parametrization (10.1) with
respect to the sphere centered in .�0:63;150;�162/ and of radius 150 and with
respect to the sphere centered in .�0:63;280;�162/ and of radius 280 are:

Fig. 13

And finally we are able to obtain the bouquet in Fig.5. We just put together
the surfaces in Figures 3 and 13 and the two other inverses that we get by invert-
ing the Dini’s surface with respect to the sphere centered in .�0:63;�150;�162/
of radius 150, and to the sphere centered in .�0:63;�280;�162/ of radius 280.

4 Digression. 3D Printing of the Dini bouquet

Probably the reader knows what 3D printing is. During the last 4 - 5 years it
sticked out from technical reviews and specialist environment to come to mass
reviews and TV. In a certain sense, 3D printing “brings to real life” solid objects
who live in the virtual worlds created by computers. Thanks to it we can realize
and keep in our hand a very precise copy of the Dini surface bouquet. Those who
do not know enough about 3D printing techniques will find some details further
on this paragraph. The picture below shows a virtual model of the bouquet (on
the left) and a photography of the corresponding physical model of it.
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Let us spend some words more about this technique. First of all, any
application of these or other surfaces in physical world bases on the realization
of material models of such objects. By means of scientific, design or engineering
software it is possible to get 3D models, i.e. models that exist in a virtual three
dimensional space in the memory of a computer and of which we can see in
perspective some projections and animations giving us the impression of being
watching real objects.

Techniques of rapid prototyping and 3D printing, born in the end of
the eighities of last century, allow to carry out the next step, that is to take
mathematic surfaces to the concrete, real world in the form of tangible objects,
which we can hold in our hands, rotate, and observe from different angles,
to get a precise idea of their geometrical and topological properties. The
mentioned terms indicate a series of techniques widely used to build conceptual
and functional prototypes in several industrial fields, like automotive, electric
household appliances, toys, jewels and medical fields, with not negligible
applications in artistic, cultural and archeological areas. The main innovation
introduced by these techniques (in the following we will use just the 3D printing
term, which generally indicates medium to low cost systems that do not require
a specific technical competence to users, while the rapid prototyping term is
associated to the industrial/professional systems; the bases of the operating
principles are the same) is that they make realizable every kind of shape, no
matter how complicated they are, with the sole condition that they represent real
solid objects, i.e. not impossible figures. Shapes can be complex, can have back
drafts, undercuts, inner canals of cavities, features that make them impossible to
be realized by means of more traditional techniques such as lathe or CNC cutter
(for example: a car’s engine block, including the duct for the liquid coolant, or
the accurate reproduction of an human skull). This is made possible thanks to the
working method of 3D printers. They decompose the 3D model to be realized –
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usually a closed triangle mesh – into a collection of plane parallel sections. Then
they execute the realization of every layer, in thickness variable between 0:05
and 0:5 mm depending on technology, until they produce a concrete part that
corresponds to the virtual object. Materials used vary depending on technology:
photopolymers, ABS resin, nylon, plaster, ceramic, metal.

Fig. 14 Photos of 3D prints of models of surfaces; From left: part of the Klein bottle in
Lawson’s version; Moebius band with circular boundary; Boy surface according to F.

Apéry’s parametrization (see [Ap]).

So, what do we have to do if we have the equations of a surface and we
want a physical model of it? Unfortunately, the operation is not straightforward.
In fact, the input needed for an RP system is a watertight polyhedral mesh
which represents a real object. In the main applications of 3D printing (design of
new products in industrial field) the solid model is produced by solid modeling
software, specifically conceived to give outputs ready to use with 3D printers,
or by reverse engineering techniques. There is a survey of scientific software
which allow the representation and visualization of surfaces starting from their
parametrization (equation), like Mathematica, Maple, MatLab, MathCad, but
such representations are not usable on a 3D printer. It is necessary to shift from
the bidimensional exhibits needed in visual/graphic environments to volume-
including shells suitable to 3D printing environment. This idea can be transferred
into a series of mathematical operational steps, whereof starting with a surface
parametrization we end up having a closed mesh directly usable by a 3D printer,
which effectively represents our surface. It is relatively simple to obtain a
printable solid model for regular surfaces without multiple loci by using the
basic tools of differential geometry: it suffices to define some parallel and
normal surfaces to the given one to construct a solid shell around it. Otherwise,
in presence of self-intersections and/or singularities (and these are often the
most interesting cases) we need to solve nontrivial problems which involve
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more differential geometry and computational geometry and which request
skills transversal to both the mentioned scientific fields.

We finish this short journey into the world of 3D printing saying that in the
last decade 3D printers performances have been constantly increasing while
their price has decreased. In a close future, that probably has already begun, it
will be normal to have a 3D printer connected to our PC just like today everyone
has a inkjet or laser printer. Today (2013) it is already possible to buy a small
3D printer kit, with basic performances, at a price as low as 600 dollars.

5 Notes on circular inversion

Historically, the interest for transformations of the entire plane and for the
properties that are invariant with respect to them, to solve geometrical problems,
comes from the development of projective geometry of the XIX century, mainly
due to Gaspard Monge (1746-1818) and to Jean-Victor Poncelet (1788-1867).

As regards the inversion, to our knowledge the most authoritative references
are, in chronological order, the F. Bützberger pamphlet [Bü], reviewed by Arnold
Emch in the Bulletin of the American Mathematical Society, vol. 20 (1914),
pp. 412 - 415, and the very interesting Boyd C. Patterson’s paper [Pa] on the
origins of the geometric principle of inversion. Another useful reference for
circular inversion and its generalizations, including those mentioned in the last
two sections of this paper, is [Ca].

Let us follow the more important stages of this route from the beginning, in
chronological order.

The first paper containing in nuce the idea of inversion appears in 1600,
when François Viète gives a solution of the tenth Apollonius problem 3. On
pages from 5 to 9 of [Vi], Viète presents a solution by using the center of
similitude of two circles.

After more than two centuries, the belgian mathematicians (and good
friends) Germinal Pierre Dandelin [Da] and Adolphe Quételet [Qu], also known
for the so-called Belgian Theorems (see, e.g., [Hu]), arrive, independently one
from the other, to the principle of inversion when studying the properties of
the focale of conic sections (see, e.g., [Pa], p. 156) by means of stereographic
projection. In particular, Quételet deduces the relation rr 0 DR2 between radii
vectores that are reciprocal with respect to a circle of radius R, and also the
explicit analytic formulas of the circular inversion.

But the first who gives the precise definition of inversion and establishes
and applies inversion is Jakob Steiner, during his researches on the geometry of

3PROBLEMA X: Datis tribus circulis, describere quartum circulum quem illi contingant. (To
draw a circle that touches three given circles in a plane.)
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the circle and the sphere through the theory of similar figures (see [Bü]). Later,
in 1847, Joseph Liouville will give to the inversion the name of transformation
par rayons vecteurs réciproques. Again from [Bü] it comes out that Steiner was
interested in this study in the attempt to solve the following problem: given in
a plane three circles, to find the locus of a point whose polars with respect to
three circles pass through a point.

In 1831, Julius Plücker (see [Pl]) finds inversion within the theory of poles
and polars (in the next section we shall recall the construction of poles and
polars of a conic), while in 1832 Ludwig Immanuel Magnus, in [Ma], discovers
inversion as a particular case of a bijective map between two planes.

In 1836, Giusto Bellavitis, informed, even if partially, about the results
obtained by Dandelin and Quételet, realizes that inversion is a very useful
instrument that, combined with other geometric tools, could lead to new
theorems. His memoir [Bl] contains an elementary and very complete exposition
of various geometric transformations such as those of similarity, projection,
inversion, reciprocal polars, homology.

In 1842 there are two more simultaneous and independent discoveries of a
new principle that is nothing but the inversion. The mathematicians involved
are John William Stubbs and John Kells Ingram, both at Trinity College in
Dublin; three of their papers on the subject even appear in the same volume of
the Transactions of the Dublin Philosophical Society (see [St1], [St2], [In1] and
[In1]).

In 1845, William Thomson (Lord Kelvin) communicates to Liouville his
“principle of reciprocal points”, a method he found useful to solve a certain
problem in electricity. Louville develops the analytic theory of the Thomson’s
transformation that in this occasion he calls transformation by reciprocal radii.

The last we have to mention is August Ferdinand Möbius, that in 1855
undertakes in [Mö] a systematic study of inversion.

6 Generalizations

A quite reasonable question is whether there exist other similar, simple, geomet-
ric, useful constructions, that can also give rise to new shapes. In 1838, Giusto
Bellavitis of Padua proposed in [Bl] a very natural generalization of the circular
inversion by taking any conic instead of a fixed circle, and allowing the center
of the inversion to be placed anywhere, and not only in a special position as, for
example, in a center of symmetry.

Such a generalization can be obtained by considering that, as for the circle,
for any conic there is a canonic, geometric way to find the point P 0 inverse of a
point P . This happens thanks to the fact that a conic determines in its plane a
correspondence between points P , the poles, and straight lines p, their polars.
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For example, given an ellipse � , if P is a point outside � , its polar p is the
straight line through the points Q and T where the two tangents to � from P

touch the conic.
When P is a point of � , there is only one tangent to � at P , and therefore

this tangent coincides with the polar p of P .
If P is inside � , any two straight lines r1, r2, r1 ¤ r2, passing through P ,

intersect � in four points A1, B1, A2, B2. Let Q and T be the intersections of
the lines a1, b1 and a2, b2, respectively tangent to � at the points A1, B1 and A2,
B2. Then the polar p of P is the straight line through Q and T . The following
figures illustrate the first and the third case.

Fig. 15 Polars (red) of a point P outside or inside an ellipse

Therefore, according to Ludwig Immanuel Magnus and Julius Plücker (see
[Ma] and [Pl]), we can define the inversion with respect to a conic � in the
following way.

Definition 6.1 Let A be a point fixed as origin in the plane of � . Then the
inverse P 0 of a point P of this plane is the intersection between the polar of P
with respect to � and the straight line through P and the origin A.

In Fig.16 are represented an ellipse and the construction of P 0 when the
point P is outside (left) and inside (right) an ellipse:

If P belongs to � , its polar line is the tangent to � at P and the straight line
through P and A intersects this tangent at P . Thus P D P 0.

Except for the origin A and the two points (real or imaginary) where the
tangents from A to � touch � (these are the three principal points), every point
P has only one inverse P 0.
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Fig. 16

It is not difficult to foresee that the study of the inversions with respect to
the different conics and to various origins can be even rather complicated. This
work has been achieved in 1865 by T. A. Hirst in the paper On the quadric
inversion of plane curves [Hi]4, where one can find an ample and detailed essay
on the subject. Here we shall only mention and illustrate by drawings the more
interesting and useful of the special cases corresponding to particular choices of
the conic and of the origin. In the following, the fundamental conic is the conic
with respect to which we invert points.

(I) The fundamental conic is a hyperbola with its centre at the origin A.

The inverse of every straight line parallel to one of its asymptotes is a
straight line parallel to the other asymptote, and the two straight lines
intersect on the fundamental hyperbola.

The inverse of every other straight line is a hyperbola passing through
the origin, and having its asymptotes parallel to those of the fundamental
hyperbola.

The inverse of any hyperbola which does not pass through the origin,
but has its asymptotes parallel to those of the fundamental conic, is an
hyperbola possessing the same properties; and if the hyperbola we want

4An Italian version of this paper, published in Annali di Matematica Pura e Applicata, Serie
1, Dicembre 1865, vol. 7,1, pp. 49-65, with title “Sulla Inversione quadrica delle curve piane”, is
due to Luigi Cremona. Here is how the paper is introduced: We consider a good and useful thing to
bring this important and very elegant work of our friend, Mr. Hirst, to the knowledge of the readers
of the Annali. (Stimiamo cosa buona e utile il far conoscere ai lettori degli Annali questo importante
ed elegantissimo lavoro del nostro amico, il Sig. Hirst.) (Luigi Cremona)
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to invert has centre at the origin, its inverse will have centre in the origin
as well.

(Ia) The conic is an equilateral hyperbola.
Choosing again the origin at the centre of the hyperbola, the method of
inversion becomes identical with the hyperbolic transformation investi-
gated by Giovanni Virginio Schiaparelli, in his interesting memoir Sulla
trasformazione geometrica delle figure (see [S1]).

(II) The fundamental conic is an ellipse and the origin is at its centre.
The inverse of every straight line in the plane will be an ellipse passing
through the origin, and at the same time similar, as well as similarly
placed to the fundamental ellipse (that is, in the two ellipses, the axes of
symmetry corresponding in the similarity are parallel).

Every ellipse not passing through the origin, but similar and similarly
placed to the fundamental one, has for its inverse an ellipse with the
same properties; and should the primitive be likewise concentric with the
fundamental ellipse, so also will be the inverse:
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Fig. 17 Inversion of three parallel straight lines

7 Schiaparelli’s hyperbolic inversion of some surfaces

In this section, we illustrate by some examples how the Schiaparelli hyperbolic
inversion transforms figures and bends surfaces. Other examples can be found
in [Pe].

To obtain a generalization of the spherical inversion, Schiaparelli substitutes
the sphere with a quadric (see [S1]). Here we only consider the particular case
when the quadric is a precise hyperboloid of two sheets.

� The circular cylinder of parametrical equations8<:
x.u;v/ D acosu
y.u;v/ D a sinu
z.u;v/ D v

with respect to the hyperboloid of two sheets of equation xyCxzCyz D 1
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has as inverse

Fig. 18 Hyperbolic inverse of a cylinder

� The inverse of the pseudosphere of parametric equations8<:
x.u;v/ D acosusinv
y.u;v/ D acosucosv
z.u;v/ D acosvCa ln.tan. v

2
//

with respect to the same hyperboloid is

Fig. 19 Hyperbolic inverse of a pseudosphere

� Next we consider the Dini’s surface of parametrical equations8<:
x.u;v/ D acosusinv
y.u;v/ D acosucosv
z.u;v/ D acosvCa ln.tan. v

2
//Cbu
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Its inverse with respect to the same hyperboloid of two sheets is

Fig. 20 Hyperbolic inverse of a Dini’s surface

� Finally we apply the same inversion to the tori of parametric equations

X1.u;v/D fcosu.8C3cosv/�12;sinu.8C3cosv/�12;3sinvC20g

and

X2.u;v/D fcosu.8C3cosv/�20;sinu.8C3cosv/�20;3sinv�20g :

From the left to the right, the corresponding inverse surfaces are

Fig. 21 Hyperbolic inverse of a Dini’s surface

Remark A modern analytic treatment of inversion with respect to a general
quadric of a n-dimensional vector space, endowed with a non-degenerated
symmetric bilinear form, can be found in the 1983 D.B.A. Epstein’s lecture
notes [Ep].
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MINKOWSKI OPERATIONS IN SHAPE
MODELLING

Daniela Velichová

Abstract
Visualization of geometric structures obtained from Minkowski sums and
Minkowski products of point sets in space En leads to views of surface
patches demonstrating certain unusual artistic and aesthetic values and
can be regarded as objects that stimulate our brains to develop higher
dimensional imagination.

1 Introduction

Operation of Minkowski sum of two point sets was introduced by Hermann
Minkowski in 1903 during his close cooperation with David Hilbert at the
university in Göttingen. Nowadays this set operation has been re-introduced in
connection to finding geometric algorithms for description of specific geometric
problems dealing with layout optimization, planning trajectory of a robot rigid
motion in the working space avoiding obstacles, in offsetting and dense packing,
for determination of equidistant manifolds and for shape modeling and morphing
purposes in computer graphics, e.g. [1], [2].
The most common interpretation of Minkowski sum of two point sets is by
means of vector sum of the position vectors of all points in the given sets.
Let us consider infinite sets of points A and B , which are smooth manifolds in
En determined by vector maps

A W 1r.u/D .1r1.u/;
1r2.u/; :::;

1rn.u//; u 2 Œ˛;˛
0�

B W 2r.v/D .2r1.v/;
2 r2.v/; :::;

2 rn.v/; v 2 Œˇ;ˇ
0�

Minkowski sum C of curves A and B is defined by

C W r.u;v/D .1r1.u/C
2 r1.v/;

1r2.u/C
2 r2.v/; :::;

1rn.u/C
2 rn.v//;

.u;v/ 2 Œ˛;˛0�� Œˇ;ˇ0�

Minkowski sum of parabolic arc and ellipse, both equally parameterised for
uD v, is illustrated in Figure 1, on the left, while Minkowski sum of parabolic
arc and lemniscate of Bernoulli on the right in Figure 1.
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Fig. 1 Minkowski sum of equally parametrized curve segments

Some illustrations of surface patches that are generated as Minkowski sum
of two curve segments in the space E3 parameterised for different parameters
u;v are presented in Figure 2. The basic curve segments are planar curves
located in two mutually perpendicular planes, and from the left to the right
they are the following: two ellipses (1), two parabolic arcs (2), versiére and
shamrock curve (3), and finally asteroid and chain curve (4). Surface patches
that are Minkowski sums of the respective pairs of curves are presented in their
orthographic axonometric views. Equations of curves are the following

A W 1r.u/D .1acosu; 1b sinu;0/;

B W 2r.v/D .2acosv;0; 2b sinv/; du;v 2 Œ0;2��

A W 1r.u/D .1au; 1bu2
C

1cuC 1d;0/;

B W 2r.v/D .2av;0; 2bv2
C

2cvC 2d/; u;v 2 Œ0;1�

A W 1r.u/D .1a.2u�1/;0; 1b=.1cC .1a.2u�1//2/; u 2 Œ0;1�

B W 2r.v/D .0; 2acosv sin2 v;0; 2acos2 v sinv/; v 2 Œ0;2��

A W 1r.u/D .0; 1a.cos3uC3.cosu�1//;�1a.sin3uC3sin3u//; u 2 Œ0;2��

B W 2r.v/D .2a.2v�1/;0; 2b=2.exp.2b.2v�1//C exp.�2b.2v�1///; v 2 Œ0;1�

where ia;ib;ic;id are suitable constants determining form of curves.

Fig. 2 Minkowski sums of pairs of various curves in E3
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In Figure 3, axonometric views of Minkowski sum of an ellipse and an
elliptical conical helix from the space E4 are illustrated with equation

r.u;v/D
�
0; 1a.cos2�u; 1b sin2�uC 2a.1�v/cos2�v;

2b.1�v/sin2�v; 2c2�v
�
; .u;v/ 2 Œ0;1�2

Resulting surface patch is a manifold in the four-dimensional space, which can
be projected orthogonally into all four possible three-dimensional sub-spaces
determined by triples of coordinate axes. These orthographic views are surface
patches depicted by their axonometric views in all 4 different 3-dimensional
spaces with particular triples of coordinate axes.

Minkowski linear combinations of two curve segments A and B are gener-
ated as Minkowski sums of k-multiple of curve A and l-multiple of curve B for
any real numbers k and l , C D k:A˚ l:B . Equation of linear combination of
these two curves is

C W r.u;v/D k 1r.u/C l2r.v/; .u;v/ 2 Œ˛;˛0�� Œˇ;ˇ0�; k; l 2 R

Fig. 3 Views of Minkowski sum of ellipse and conical elliptical helix in E4

Minkowski linear combinations of an ellipse and parabolic arc positioned in
one plane and parameterised for uD v with a choice of two different specific
values of coefficients k and l are illustrated in Figure 4.

Fig. 4 Minkowski linear combinations of ellipse and parabolic segment



130 Daniela Velichová

Surface patches illustrated in Figure 5 are Minkowski linear combinations
of a lemniscate of Bernoulli

A W 1r.u/D .1acosu
p
jcos2uj; 1a sinu

p
jcos2uj;0/;u 2 Œ0;2��; 1a 2 R

and parabolic arc

B W 2r.v/D .2av;0;bv2
C cvCd/;v 2 Œˇ;ˇ0�; 2a;b;c;d 2 R

These two planar curves are positioned in two perpendicular planes in the
3-dimensional space. Their Minkowski linear combinations are surface patches
C generated as Minkowski sums of k-multiple of curve A and l-multiple of
curve B for any real numbers k and l , with equation

C W r.u;v/D k 1r.u/C l 2r.v/

D .1ak cosu
p
jcos2ujC 2alv; 1a sinu

p
jcos2uj; l.bv 2

C cvCd//;

for .u;v/ 2 Œ0;2��� Œˇ;ˇ0�.

Fig. 5 Minkowski linear combinations of two curve segments in 3D
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Minkowski linear combinations of two curve segments from higher di-
mensional spaces are well-defined and can model geometric figures in higher
dimensions, details can be found in [3] and [4]. Orthographic projection from 4D
to different 3D subspaces can be easily obtained. Some examples of Minkowski
linear combinations of curves, i.e. various surface patches in 4D are presented
in Figure 6 in their orthographic views.

Fig. 6 Minkowski linear combinations of two curve segments in 3D

Examples of Minkowski matrix combinations of two plane curve segments
with the same parameter are curve segments presented in Figure 7. Minkowski
matrix combinations of asteroid and versiére in perpendicular planes are mapped
in Figure 8, in the top row (their Minkowski sum is in Figure 2 on the right),
while Minkowski matrix combinations of parabolic arc and lemniscate of
Bernoulli are presented in the row below, for comparison with their Minkowski
linear combinations in Figure 5.
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Fig. 7 Minkowski matrix combinations of plane curve segments

Fig. 8 Minkowski matrix combinations of curves in E3
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2 Minkowski product of point sets

Minkowski product of two curves is the surface patch determined by vector
equation that is the wedge product of vector equations of the two curves.
Considering curve segments A and B defined by their vector maps

1r.u/; u 2 Œ˛;˛0�; 2r.v/; v 2 Œˇ;ˇ0�;
their Minkowski product is a surface patch C determined by equation

C W r.u;v/D k 1r.u/^ 2r.v/; .u;v/ 2 Œ˛;˛0�� Œˇ;ˇ0�
Example in Figure 9 shows the Minkowski product of a parabolic arc and

the lemniscate of Bernoulli, in comparison to their Minkowski sum presented in
Figure 5, at the top. Equation of this surface patch is

C W p.u;v/D .1a.bv2
CcvCd/sinu

p
jcos2uj; 1a.bv2

CcvCd/cosup
jcos2uj; 1a 2av sinu

p
jcos2uj/; .u;v/ 2 Œ0;2��� Œˇ;ˇ0�

Fig. 9 Minkowski product of two curve segments in 3D

Minkowski product of differently parameterised shamrock curve and ver-
siére that are located in different 3-dimensional sub-spaces of E4 shows a
spectacular surface patch from the space E4 presented in different 3-D views in
Figure 10. Equation of this surface has the following form

C W p.u;v/D
�
a.2u�1/cosv sin2 v;

acosv sin2 v

bCa.2u�1/2
;0;

a sinv cos2 v

bCa.2u�1/2

�
; .u;v/ 2 Œ0;1�� Œ0;2��

Fig. 10 Views of Minkowski product of two curve segments in 4D
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3 Minkowski triples

Various Minkowski combinations of three point sets A;B;C can be introduced,
in order to create unusual forms of point sets in En with specific properties
determined by their generating principles or inherited from the original operands,
smooth manifolds in 2 and even more dimensional spaces. Except for sums,
combinations of sums and products depend on the order in which these
operations are introduced.
Let us denote the Minkowski sum as ˚, the Minkowski product as ˝, and
consider their vector maps:

A defined by 1r.u/;u 2 Œ˛;˛0�
B defined by 2r.v/;v 2 Œˇ;ˇ0�
C defined by 3r.w/;w 2 Œ; 0�.

Various forms of surface patches can be obtained especially for equal
parametrisations, in which either uD v;uD w or v D w.

Fig. 11 Views of Minkowski sum triple of three curve segments in 3D

An example of surface generated as a Minkowski sum triple,

C D A˚B˚C W sr.u;v;w/D 1r.u/C 2r.v/C3 r.w/;
.u;v;w/ 2 Œ˛;˛0�� Œˇ;ˇ0�� Œ; 0�;

of three curve segments positioned in perpendicular planes in E3, parabolic arc,
circle and lemniscate of Bernoulli and given by equation

sr.u;v/D .cosuC cosv sinv;cosvC sinv;sinuC sin2 v/; .u;v/ 2 Œ0;2��2

is presented in different views in Figure 11.
Minkowski linear mixed combinations .A˚B/˝C of three circles A;B;C

located in perpendicular planes, while 2 of them are equally parameterised, are
surface patches defined by

sm.u;v;w/D .1r.u/C 2r.v//^3 r.w/; .u;v;w/ 2 Œ˛;˛0�� Œˇ;ˇ0�� Œ; 0�
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and illustrated in Figure 14 and Figure 15.
Minkowski product triple .A˝B/˝C is defined by

sp.u;v;w/D .1r.u/^ 2r.v//^3 r.w/; .u;v;w/ 2 Œ˛;˛0�� Œˇ;ˇ0�� Œ; 0�

Fig. 12 Views of Minkowski product triple of three curve segments in 3D

Fig. 13 Views of Minkowski mixed triples of three curve segments in 3D

Minkowski product triples of three curve segments with equation

sp.u;v/D .�cosusinvC sin2u;�sin2u.cosuC cosv/;

cosucosvC sinv cos2 v/; .u;v/ 2 Œ0;2��2

can be seen in Figure 12, while their Minkowski mixed triples with equation

sm.u;v/D .sinu.3cosvC sinv/;sinv.�sinucosuC3cosusinv/;

� cosu.3cosvC sinv//; .u;v/ 2 Œ0;2��2

are illustrated in Figure 13.
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Fig. 14 Views of Minkowski product triples of three circles in 3D
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Fig. 15 Views of Minkowski mixed triples of 3 circles in various positions in 3D

Interesting shapes and forms of generated surfaces can be used for purposes
of graphic design, in visualizations or in morphing. The underlying principles
of Minkowski set operations provide a tool for the generation of both, synthetic
visual and analytic representations. Thus the intrinsic geometric properties of
the created objects can be studied using the methods of differential geometry
and the specific properties inherited from the operand sets can be detected and
defined. New objects are therefore interesting from both the aesthetic and the
theoretical mathematical point of view.
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MATHEMATICS FOR THE WORKING ARTIST

Claude-Paul Bruter

Abstract

The meaning of the term “cone” defined in this article is much broader
and more flexible than the classical one. Our extension of this concept
lays the foundations for a broad mathematical theory that could be used by
artists. This article is illustrated by examples taken from mathematical and
botanical sources.The powerpoint [4] is a kind of summary of this article.

1 Introduction

“In a letter addressed to Émile Bernard dated 15 April 1904, Cézanne ambigu-
ously writes: ‘Interpret nature in terms of the cylinder, the sphere, the cone; put
everything in perspective, so that each side of an object, of a plane, recedes
toward a central point.’ ” (From Wikipedia.)

139
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Except during the Renaissance, painters have not studied and deepened the
mathematics underlying their works. In the best cases, they have used what
mathematicians have thought of and discovered.

In particular, many mathematicians have developed the study and the
representation of their objects using numbers as a powerful coding system.
Geometers and topologists use a more direct and intrinsic approach to define
and understand these objects. Knots, polyhedra, spheres and tori have been the
main fundamental objects they looked at and used to that aim.

In this article, I would like to focus the attention on the cones mentioned
by Cézanne, and to what can be done with these cones. In the past, with the
work by Apollonius and his successors involved in the theory of conics and
quadrics, cones have played an important role in geometry, then, much later,
in mechanics and physics. Mathematicians did not emphasize the fact that
cones are also present in perspective theory, thus, in some sense, in projective
geometry: remind the “central point” Cézanne was evoking.

The notion of cone I define and use here is much larger and flexible than
the classical one. The introduction of different manners to assemble these
cones through identification and attachment along singular elements allows the
construction of a much richer collection of objects than the one obtained by the
use of Cézanne’s tools.

The article, illustrated by examples borrowed from the mathematical and the
vegetal worlds, does not address the mathematician who would like to develop
and expand the mathematical content along several directions 1 (projections, ap-
parent contours, duality, transformations, enumeration, algebraic and numerical
representations, sections, trajectories, in Euclidean spaces or not). It addresses
the artist who might wish to play with all these cones and create new beautiful
works for the pleasure of our eyes and of our mind.

2 Singularities

Fig. 1 A quasi standard
cone, a view by Jos Leys.

1The mathematical theory behind this paper is the enormous theory of fiberspaces with
singularities, whose first chapter is the theory of cones.
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In a previous paper [1], several concepts and tools have been set forward, in
particular the ones of singularity and of singular part of a shape.

Typical examples of singularities are for instance the vertices of a polygon in
the plane, or the vertices of a polyhedron in the usual space, like the four vertices
of tetrahedron, the six vertices of the octahedron (images from Wikipedia):

Fig. 2

D being a local connected domain of the shape, we shall say that it is
homogeneous of dimension n, if any neighborhood of any point of D has the
topological dimension n.

For instance:
– any edge of the tetrahedron, without the two vertices which close that

edge, is a 1-dimensional domain;
– any face of the tetrahedron, without the triangle which borders it, is a 2

dimensional homogeneous domain.
Any subdomain of D whose topological dimension is k < n is a potential
singular part of D.

Thus, any point (k D 0) of a face of a polyhedron is a potential singular
point, any curve (k D 1) drawn on the face, is a potential singular part. Vertices
of polygons and of polyhedra are not only potential singularities. They will be
defined as (incarnated) singular points.

3 Cones

3.1 Introduction Traditionally, there is nothing inside a tetrahedron: it is an
hollow object. But it may be filled with matter: it becomes then an heavy die, a
full object. We shall make the distinction between hollow cones and full cones.

In this paper we shall consider Euclidean spaces only. All the cones C we
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are going to consider will be here defined2 by the three following ingredients,
the two first ones a priori lying in an n-dimensional Euclidean space:

1) a vertex V (topological dimension 0), called the main vertex or the apex
of the cone.

2) a basis denoted by B.f /, a closed domain of topological dimension n�1,
or by B.h/, which is the boundary of B.f /, thus a closed domain of topological
dimension n�2. [In the following example (Figure 3 left), B.f / is supposed to
be a full triangle].

Fig. 3

3) an interval I �R (topological dimension 1) called the standard generator
or fiber, each of whose inclusions into the cone through a non decreasing
differential mapping: iP W I ! Rn is a curve that joins a point P of the basis to
the apex V . This curve is called the local fiber at P .

Definitions: A cone C with B.f / as a basis is called a full cone of dimension
n. A cone with B.h/ as a basis is called an hollow cone of dimension n�1. We
shall say that a cone is linear if all the local fibers are intervals (all the local
inclusions are linear mappings).

3.2 Standard basic examples

3.2.1 As an example of full cone, we may choose the full tetrahedron. We can
look at it as a (linear) cone if we:

– choose a vertex of this tetrahedron and name it V .
– consider the opposite closed face to V - its topological dimension is 2 -

and name it B.f /.
– consider the intersection of the tetrahedron with any line which cuts
B.f / at any P and joins V . This intersection is the local inclusion of the
interval I , the fiber at P .

2This definition can be understood as the result of the Bourbakist point of view: Bourbakist
in the good sense, i.e. a structuralist point of view, looking at the elements of an object which
characterize its structure.
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Fig. 4

The topological dimension of the full tetrahedron is 3 as being equivalent
to a full sphere called a 3-dimensional ball. The boundary of this cone is the
complete hollow cone associated with the full cone.

3.2.2 Now, from the full tetrahedron, we can extract an other hollow cone by
considering the three faces adjacent to V :

– V remains the apex of that cone,
– its basisB.h/ is now the close curve, i.e. the hollow triangle which bounds
B.f /, the opposite face to V ,

– the intersection of the tetrahedron with any line which cuts B.h/ at any
P and joins V . This intersection is the local inclusion of I .

3.2.3 Simpler, Figure 4 shows a green triangle which is a full 2-dimensional
linear cone lying in the usual plane. Its basis bb0 is the opposite side to the apex
V . The boundary of bb0 is the set of the two points b and b0. The two hollow
1-dimensional corresponding cones appear on the right.

Fig. 5

3.2.4 When nD 2 (the plane), Figure 5 shows the example of four hollow
1-dimensional cones whose vertex V is an antibubbling singularity (up) or
a bubbling singularity (down). The basis here has two points which are not
visualized here. The curves g and g0 are local inclusions of the interval I . I shall
call that cone a “Chinese hat”. In each case, one sees two cones with the same
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apex V : the larger one is non linear, the linear one comes out from the previous
one by considering the tangent lines in V to g and g0 respectively.

3.2.5 Consider any family of knots in the usual 3-space (simpler, a pencil of
conics), points in that space which play the rôle of apices: look at the mountains
you obtain!

4 A few remarks and definitions

4.1 Any n-dimensional full cone C with apex V and basis B.f / gives birth to
two .n�1/-dimensional hollow cones with apex V : the complete hollow cone
of C, which is the boundary of C, and Cc the coat of the full n-cone whose
basis is the boundary of B.f /. This coat is included in the boundary of the full
cone.

Conversely, a hollow .n� 1/-cone with basis B.h/ can be the coat of an
infinity of n-cones. Any two such n-cones share the same boundary B.h/ of
their respective basis B.f / and B.f /0. They wear the same coat. These n-cones
will be named the wearers of the .n�1/-cone.

4.2 Figure 5 shows the example of a linear cone which is defined by the
tangents at its vertex V to the fibers of a given cone, with the property that the
angle between the tangents is not null, nor equal to � .

Cones with such a property, i.e. the tangent cone is not a linear .n� 1/
subspace, will be called rough cones.

A rough cone has a unique linear tangent cone.
But conversely, a linear cone has an infinity of rough cones for which it is

their common linear cone.

Half-sphere as a soft 2-cone in the
3D-space:

its basis is a circle.
A view by Jos Leys.

Arc of circle as a soft cone:
an edge joining its basis

B.h/D fP;P 0g.

Fig. 6

4.3 If the tangent cone is such a .n� 1/ linear subspace, the cone is a soft
or spherical cone. Any point of an half-circle, of an half-sphere, is thus a
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spherical apex of a soft cone and a potential singularity. It becomes an incarnate
singularity when its location becomes defined by the supplementary data of a
directional line for instance.

A particular interesting situation happens when the main vertex of a cone is
located on its basis. In that case, we shall speak of a basic cone. Basic 1-cones
play a fundamental role.

4.4 Let us consider the 1-dimensional hollow cone named the cusp 3 and
defined by:

– the apex V.0;0/ is the origin of a usual orthogonal coordinate system of
the real plane,

– the basis B.h/ of this cone is the set of the two points P.1;1/ and
P 0.�1;1/,

– I is the interval Œ0;1�, and the local inclusions of I in P and P 0

respectively are defined by the parametric equations:

Fig. 7
The line which joins the apex V to any point Q.x;y/ of the fiber iP .I / has

a slope defined by the ratio y=x D t=t3 D 1=t2. When t tends towards 0, this
slope becomes infinite, so that the tangent in V to this fiber is the vertical line.

For a similar reason, the tangent in V to the fiber at P 0 is also the vertical
line.

In other words, that cone has a unique vertical tangent in V : the linear
tangent cone is an half linear space.

A cone whose linear tangent cone is so degenerated will be called a
penetrating cone or a spine.

4.5 Let us go back to the examples illustrated by Figures 5 and 7. In Figure 5,
the upper cones seems to be the symmetric of the under cones with respect of
the horizontal line. More generally, any cone has a symmetric one with respect
to any domain parallel to the domain containing its basis.

3The cusp is the most basic singularity. It has been used as a geometrical support in a study of
the universal phenomenon of ambiguity.
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Fig. 8

4.6 Let C be a given full n-dimensional cone with vertex V . Let B be a
n-dimensional ball whose center is V : the boundary of that ball is the .n�1/-
sphere centered in V . We suppose that the ball is small enough so that the
common part to the ball and the cone is entirely contained in the cone.

Fig. 9

The complement C* of C in B is a full n-cone with the same coat as C.
Let us consider the “half” n-spaces through V . If C is contained in one such

half-space, C will be named the male part of B , and called a male cone.
Its complement is the female part of B and is a female cone.

4.7 Let F be a given continuous family of .n�1/-cones Ct parametrized by
t belonging to I , with apex Vt and with the same basis B . Let A be the curve
t !A.t/D Vt : this curve will be called an axis of the family.

Fig. 10
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Let T be a .n�1/-dimensional domain which is transverse to the axis, and
�t be the section of the cone Ct by T . We suppose that for any t 0 < t the closure
of � 0t is contained in the closure of �t .

Then the closure of F is a n-dimensional cone foliated by the cones Ct .
Any .n�1/-cone C is the coat of an associated canonical wearer F .C/. An

axis of F .C/ be also called an axis of C.
Discrete foliations of cones can be worked out in the same spirit.

4.8 Let C be a 1-dimensional cone, P and P 0 the two distinct points of its
basis. Let us suppose that the curvatures at any point of the fibers are not null or
infinite except maybe in V .

Such a cone, like the left one, might be named a half smiling cone if these
curvatures have the same sign.

Fig. 11

4.9 Let Ci be an .n� 1/-dimensional cone embedded in a n-space and
called the motive, h.R/ D ƒ be a curve of such a space (more generally a
k < .n�2/ dimensional domain), and V a point of ƒ. Let Si the shape defined
by Si Dƒ�Ci so that V is the apex of a cone Ci .

The shape Si will be called a regular conical excrescence of Ci along ƒ,
ƒ being its singular curve or again its handle. Note that several Si can share
the same singular line, so that the union S D

S
Si of these local shapes can be

taken into consideration.

Fig. 12
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(More generally, we may suppose that, for each V , the corresponding cone is
subjected to an eventually continuous controlled change of metrical properties).

Given a curve ƒ in a n-dimensional space, a point V of that curve for which
the tangent to the curve is well defined, a transversal subspace to the curve in V
is a .n�1/-dimensional subspace which does not contain the tangent.

Conversely, suppose that V belongs to a shape S so that any transversal
subpsace to V defines a cone Cv on S whose main vertex V is on ƒ, then ƒ
is defined as a singular curve of S . When ƒ lies on a cone, S will be named a
flag.

When the cones are full cones, we shall say that S is a mountain and ƒ its
line of summits.

A fairly nice mathematical example of the coat of such a mountain is the
Whitney umbrella where ƒ is a line:

Fig. 13 The Whitney umbrella (from www:algebraicsurface:net/

4.10 Let �.�/ the group of symmetries of a part � of the basis of a cone
C. � induces the part C=� of the cone, and �.�/ will be called the symmetry
group of that part C=�.

4.11 Indeed, the way according to which cones are attached to singular
domains is not restricted to the consideration of their main vertices. Any other
singular part of dimension k0 < k of a .n� 1/-cone, where k < n� 2 is the
dimension of a domain ƒ, can be attached to ƒ.
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Fig. 14 The “leaf” of a fen is called a penna, which is made of pinnulae, here viewed as
2-cones, whose basis are attached to the singular curve named the rachis

5 Compositions of cones

5.1 1-dimensional cones

5.1.1 Introduction Let us first give a list of non spherical 1-dimensional
hollow rough cones in a flat 2-dimensional space. Each one has tow edges: one
of them will be called the arm, the other one the anti-arm.

Fig. 15

(It is amazing to compare this list published in 1976 [2], with the following
by Dürer around 1528 [3]: 1976�1528D 446.)

Fig. 15 bis Dürer’s list

Let us add to that list a soft 1-dimensional hollow cone, like an half circle or
an edge, a spine like the cusp, and the basic 1-cone, an edge whose one vertex
is the main vertex of the cone.

Each cone of the list gives rises to a series of n-folded arms cones like this
elementary one:
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Fig. 16 1-folded arms

The basis of each of the cones Ci of the original list is a set of two points:
{Pi1 , P 0i1}. Each such cone gives birth to an infinity of wearers (full cones)
which can also be taken into consideration.

The boundary of a full 2-cone has: three points, the apex V and the two
vertices of its basis, the two curves of the hollow cone that join the vertices of
the basis to V (the arm and the anti-arm), and the curve of its basis B.f / which
joins the two vertices of its basis. All these curves may be viewed as singular
elements of the full cone.

More generally, a fiber † of the cone is singular if it contains an element of
curve ƒ such that the intersection of its neighborhood with the cone is a flag S
whose local conic motive is rough or a spine.

We are going to proceed to attachments of 1-cones along these different
singular elements through processes of identification.

5.1.2 Self-attachment Given a 1-cone, the identification of the two points of
its basis gives rise to a topological 1-sphere like a circle, while the identification
of the two edges adjacent to the main vertex gives rise to a basic 1-cone.

Fig. 17

5.1.3 Attachment of cones by identification of their apex The attachment
by identification of the apex of two basic 1-cones gives birth to one of the
previous 1-cones.

Cones attached to each other by identification of all their apex to one of
them will be called spiders. In that case, each cone of the spider could be called
an arm or a tentacle. Figures 8 and 18 show examples of particular spiders.
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Fig. 18 Spider or Flower or Bouquet

5.1.4 Attachment by identification of a unique point of their basis

5.1.4.1 Let † be a sequence of N various cones of the list, any cone Ci

appearing ni times in the sequence. Then two consecutive cones Ci and Cj -
where j can be equal to i - are attached by a unique point of their basis, if only
one point of the basis of Ci is identified with one point of the basis of Cj .

In that way, we shall say that we have got a garland or frieze of 1-cones, or
a flag if all the cones except one of them called the handle are attached to this
handle.

If the first cone of the sequence is attached to the last cone of that sequence,
we shall say that the garland is knotted or polygonal: we can understand a
knotted garland as as a knot with singularities.

Fig. 19 C1 is attached to C2 which is attached to C3 which is attached to C1

A polygonal garland with 2N edges can be constructed with N cones.
Polygonal curves with an odd number of edges 2nC1 may need n rough or

penetrating cones plus a soft cone. But an other way to get such a polygonal
garland is to divided each edge into two attached parts, and then to use 2nC1
cones to get it.

Each knotted garland generates a spider, its dual, but the converse is not
always true.
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Except lines, any other curve in any n-dimensional space can be decomposed
in such rough or penetrating hollow 1-cones, so is a garland of hollow 1-cones.

5.1.4.2 Here is an example arising from the mathematical butterfly in catas-
trophe theory. The following local section of this surface can be viewed as a
garland of the two following cones:

Fig. 20 The Bird, the Swallow Tail

Appropriate deformations of the above drawing give birth to a stylization of
a bird.

The following shows a stylized fish as, first, the visualization of a white
1-dimensional full cone where all the fibers have a unique other common point
than the vertex - but of course they could have many such common points.

Fig. 21 The fish

But if we introduce fictive or virtual vertices in the middle of each edge (the
red points on the figure), we then define three hollow 1-cones with main vertex
respectively V , b and b0 from which the fish can be reconstructed.
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5.1.4.3 Suppose a given 1-cone imbedded in a n-dimensional space. The
possibilities to attach an other 1-cone to one point of the basis of the given cone
is infinite, being ruled by the group of rotation of that n-space. Given constraints
can of course reduce this set of potential possibilities.

5.1.5 Attachment by identification of the two singular points of their
basis Base of 1-cones are very elementary. Given a process of attachment
(the choice of the manner to identify the basis), there are infinite possibilities
of attachment of cones to a given one imbedded in an n-space, each possibility
being defined here by an element of the group of rotation of the .n�1/-space.

We shall call a p-flag the set of .p�1/ 1-cones so attached to a given 1-cone,
the handle.

Here is an easy example in the plane (nD 2).
The given 1-cone is C1, while the 1-cone to be attached to it is C2, indeed a

clone to the first one:

Fig. 22 Smile and Moustache

There are only two ways to attach the two cones with the same identification
of their basis. The first one gives a perfect superposition of the two cones since
they have the same shape (identity ofO.1/). The second way, a symmetry, gives
rise to a true smile; or a moustache!

Here is an other way to construct the fish where a point of the basis of a first
cone is the apex of a second cone.

Fig. 23 The contour of a fish built from two symmetric 1-cones
(can also be the complete hollow 1-cone of a fish).
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5.1.6 Attachment along singular curves We have been considering at-
tachments along the apex V and the elements of the basis. We now consider
identification of the singular curves joining V to the vertices of the basis, two
such curves being able to be identified if and only their curvature is the same.

Given two red 1-cones with apices V1 and V2, this identification first implies
that the identification of V1 with V2, and the identification of a vertex b1 of the
basis B1 with a vertex b2 of the basis B2: in other words, the attachment 4.1.2
and 4.1.3 have be done simultaneously, but that is here a part of the process
since the identification concerns all the points of the singular curves.

Fig. 24

A sequence of N 1-cones in an n-space (n > 2) which are attached along a
singular curve g of a given one will be called a N flag along g.

The use of less usual 1-cones gives birth to unusual shapes, especially if all
the processes of attachement are used all together.

5.2 2-dimensional cones

5.2.1 Introduction and examples

5.2.1.1 First, let us show a very few 2-cones - the mathematical images are
borrowed from the net, see for instance “images of algebraic surfaces”:

The same operations of identification and attachment can be worked with
n-dimensional cones. Here are a few classical pictures of assemblies of 2-
dimensional cones attached along singular parts of their boundary, apices, edges,
basis:

Fig. 25 (Images from the web)
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A garland (or frieze)

Serpinski motive as knotted garland

Fig. 26 Classical nodal surfaces
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It is easy to extend these examples by adding more cones of different sizes,
or to start with other polyhedra including Gosset polyedra, using apices defined
through discrete subgroups of O.n/, and reproduce similar constructions of
attached cones.

5.2.1.2 The vegetal world is also a source of examples. Let us first consider
the following standard mathematical 2-cone and one of its incarnation as a leaf
of the lily of the valley in the usual 3-space:

Fig. 27

This incarnation has the nice property to show possible fibers of the cone.
Nature is now going to attach along their basis two clones of that cone. Here
they are:

Fig. 28
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5.2.1.3 Let now us consider the following mathematical smiling 2-cones and
the two following leaves:

Fig. 29

The left leaf shows two similar sequences of half smiling 2-cones, more
or less symmetrically located on a singular curve like in Figure 14. But each
central cone is attached along a singular line of its border to two another cones,
one above and the other under itself. On the leaf of the right, moreover, all the
apices meet at the top of the leaf, on the singular curve. Indeed, these cones
getting very thin give rise to the “fibers” which appear on Figures 22 and 23.

5.2.1.4 Let us know consider the following leaf:

Fig. 30

We discover that the so-called previous generic 2-cones which seemed to
appear on Figure 30 say are indeed mountains in the sense we used to caracterize
the Whitney umbrella (Figure 13).
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5.2.1.5 Let us give here a few simple other examples of 2-dimensional objects
created with more simple 2-cones using the standard techniques of attachment:

For instance, the 2-cones of Figure 25 can be created by the classical
identification of the two edges adjacent to the apex of convenient “triangular”
2-cones: cutting and opening the given 2-cones along a curve through their apex
give rise to the convenient triangular 2-cones.

The standard 2-band in the usual space can be created by attachment of
two triangular 2-cones C and C’ like full half-smiles, but which can have any
specific shape:

Fig. 31

Twist the band as you wish in the usual 3-space, attach the corresponding
opposite sides and get Möbius bands, deformed cylinders and tori.

5.2.1.6 There are many ways to assemble cones of different shapes and to
create landscapes.

Here are two examples of such constructions: the first one, among the
simplest, show a double cone arising from the identification of the basis of two
linear cones in the usual space, the second one was made by nature, a few years
ago.

5.2.1.7 Here is a final remark about 2-cones, one that more generally applies
to n-cones. In the usual 3-dimensional space, let C be a hollow 2-cone with
basis B.h/, D a 2-dimensional linear subspace which meets that cone. The
common part of C and D is a plane curve ˇ. This curve may have singularities
and multiple common points. Then the part of the fibers through these points
between D and the apex V of the cone are singular curves of the cone.

5.2.2 Creation of 2-cones from 1-cones We are now going to look at two
main techniques to create 2-cones from 1-cones.

5.2.2.1 From full 1-cones, by attachment:
Let us first recall that a full 1-cone is indeed a 2-cone since it is a 2-

dimensional surface.
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Double cones by Jos Leys

Fig. 32

The hollow tetrahedron gives an example of the attachment along singular
lines of a sequence of 3 standard linear full 1-cones:

.V1;b11;b12/; .V2;b21;b22/; .V3;b31;b32/

attached one to the other through the identifications of the singular lines

.V1;b12/@.V2;b21/ .V2;b22/@.V3;b31/ .V3;b32/@.V1;b11/

More generally, we shall call a polyhedral 2-cone such a 2-cone constructed
from a sequence of full 1-cones with a cyclic presentation of their singular lines.
Note that generically, this kind of 2-cone is not a standard polyhedron nor a part
of such a polyhedron.

Flags of 2-cones can be constructed by attaching other 2-cones along a
singular line of one of them, or along the basis of one of them, or along a curve
of excrescence.



160 Claude-Paul Bruter

5.2.2.2 From hollow 1-cones, by local transformations:
1) Let C be a .n�2/-cone in an n-dimensional space, A be a curve which

contains the apex V . We denote by AC the set of points Q of A for which LQ

the linear orthogonal .n�1/-dimensional subspace to A in Q meets C. Denote
by C.LQ/ the intersection of C and LQ.

Let �Q be a continuous translation and/or a continuous rotation of C.LQ/

around Q in the subpsace LQ giving birth to the trace TC.LQ/ of C.LQ/ in
that subspace. We suppose that �Q is a continuous function of Q. From the
geometric point of view, we can also suppose that each local transformation
changes the local sizes.

The union of these traces TC.LQ/ when Q moves continuously on AC is a
.n�1/-cone.

Here is a trivial example where �Q is a 360ı rotation, A is a vertical line.
Starting with an half smiling cone, we may get for instance the following hollow
2-cone. We might call the corresponding full 2-cone the “bell”, or the “hat”.

Fig. 33 The bell

2) More generally, A does not contain V . Then we do not get a cone in
general, but the coat of a moutain.

A fairly simple example is the Whitney umbrella that can be obtained by
translating a Chinese hat, without any metrical transformation of its size.

From the metrical (geometrical) point of view, the presence of local sym-
metries of the basis is of some interest. One can impose in particular that the
vectorfield which acts on the transversal sections C.LQ/ keeps on the associated
group of symmetries. Then we get a privileged axis.

5.2.3 Full 2-cones, the 3-ball and the 2-sphere Let us consider a family
of full linear 2-cones C(t) like full triangles. From the topological point of view,
one can represent them by 2-cones whose basis are arcs of circles.

Let A.t/ the area of the cone C(t). We suppose that the mapping t ! A.t/

where t describes the interval Œ0;1� is continuous, with A.0/D 0, and A.1/DA.
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Now, in the usual 3-space, let ƒ a vertical interval, and S the shape, the
flag defined by a regular conical excrescence of the family of C(t) along the
handle ƒ.

Here is (left) a vegetal example of such a shape showing C(1) and ƒ,
together with its symmetric (right):

Fig. 34 Flags with homothetic cones

Let 1.t/ and 2.t/ be the arms of C(t) and call the sets F.i/D f
S
fi.t/ j t 2

Œ0;1�g the i-face of S , where i D 1 and 2.
Consider n clones of S , S1, S2, ..., Sn, and their respective faces Fk.i/

where Fk.i/ is the i-face of the clone Sk .
Identify their handle to get a flag, then identify the face Fk.2/ with the face

FkC1.1/ for k < n�1, the face Fn.2/ with the face F1.1/.
Topologically, the result is a 3-ball whose boundary is the 2-sphere: one

may taste an equivalent final following conclusion.

Fig. 35

6 Singularities again

6.1 Creation The pinching process [1] is a standard process to create
singular sub-domains. The creation of a singular point can be practically worked
out in the following way. Choose the location in the object close to which the
singular point should appear. Consider a small ball containing this location and
a point V inside the ball but out of the object. The intersection of the ball with
the object will be the basis of a hollow cone with apex V such that the object
and the cone share the same tangent space along the basis. Attach the cone to
the object and cut off the interior of the basis.

Note that when the object is locally convex, the resulting singularity V can
be bubbling or anti-bubbling according to its position with respect to the object.
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A physical equivalent way to create a singularity consists in choosing a
point V on the object and to draw out the object along curve through V . Such
a process has been for instance used by Philippe Charbonneau to create the
following sculpture:

Fig. 36 Biconique 2 by Philippe Charbonneau

Here, the object is a curve, the knot called the trefoil which bounds a Möbius
band. The curve was drawn out at two points V and V 0 which have been fixed
up on a vertical rigid axis.

More complex sculptures could be similarly worked out with any other
regular torus knot.

6.2 Suppression

6.2.1 The first natural process is to smooth the object by suppressing locally
the cone and substituing to it a small half ball or half sphere. We may call this
process the rounding of the singularity.

I shall show a very few reasonably good home made photos first for the
pleasure of the eyes.
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Fig. 37

The first group of photos illustrate the internal symmetry of flowers and
the layout of their petals viewed as cones. Indeed, it seems to me that the main
symmetries of the floral world are of order: 2, 2C2, 4, 3, 3C2, 5. 2C2 means
a superposition of orthogonal symmetries of order 2. Similarly, 2C3 means a
superposition of a symmetry of order 2 and a symmetry of order 3. Frequently,
the order of these fundamental symmetries is multiplied by an even number.
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The second group of photos illustrates the rounding of the singular parts of
some polyhedra which appear as buds of flowers.

Here, it is interesting to notice that the visible part of the complete flower itself (right)
has the shape of a half octahedron.

Fig. 38 The bud of a poppy and its flower
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The bud of a peony

Fig. 39

6.2.2 Paragraph 4.7 introduced a notion of foliation of a cone. This notion
does not fit exactly what can be observed in nature. A better approach consists
in introducing a notion of multiple protecting covering - richer than the notion
of (simple) covering commonly used in mathematics.

For instance, let us consider the full 2-cone we have met in 3.2.3 (Figure
41, left), and its boundary, its associated complete hollow 1-cone, represented
by the red triangle (Figure 40, middle). It is viewed as a simple covering of the
full triangle. Since it has no thickness, we may cover the full triangle by any
number n of replica of the hollow cone: they constitute a multiple covering of
the full cone.

Fig. 40

Consider now a tetrahedron as a cone C with apex V , whose basis is the
previous full triangle. Its coat C c is a hollow 2-cone whose basis is the red
triangle of Figure 42. Consider now an other hollow 2-cone with the same apex
V , but whose basis is the blue triangle.

The singular points of the red basis of the given 2-cone are contained in the
regular part of the blue basis of the second 2-cone. We shall call that second
cone a protecting covering of the first one.
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Fig. 41

Indeed the second cone is “protecting” the singular lines of the first cone.
If you iterate the process of protection of the successive 2-cones, together

with a rounding of the whole construction, you get something similar to the bud
of a flower characterized by an appropriate foliation.

As an example, we may choose the bud of a rose - the rose might have a
3C2 symmetry.

Fig. 42

7 Exfoliations

In order to create new shapes, we have intensively been using attachments along
singular parts. If we think in physical terms, giving some thickness to a 1, 2
... n-dimensional domain, the k-one will be understood as less strong than the
.kCp/ one. Thus a singular part of an object belongs in some sense to the weak
part, to the most fragile part of an object.

Then the attachment of two objects along some of their singular part may
show some weakness, especially if the quality of the glue or of the soldering is
not the best.

That is a reason which encourages the creation of protecting coverings.
We shall call exfoliation the inverse process of creation. As it is working in
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the floral universe, it consists in disconnecting an object along its singular parts,
through local processes of separation, of detachment.

From the metrical and physical point of view, the process of attachment is
not brutal in general, but is progressive, and can be numerically controlled in
time according to the point of the singular part which is reached. The operation
of exfoliation has similar properties, but can be run faster than the one of
creation.

Since an apex is a 0-dimensional domain, exfoliation generically begins
with such singular points. If we imagine the presence of a multicoloured cloud
of 1-cones, exfoliation, a big-bang coming with the vanishing of the apices
gives rise to an other cloud of arms and anti-arms.

Exfoliations of polyhedra give rise to many new beautiful flowers.

8 Conclusion

The topological theory which has been presented here is fairly simple, even
perhaps naive. But giving also rise to a large amount of mathematical questions,
its fecundity is rather a proof of its interest. In higher dimensions, our usual
mathematical tools are unable to classify singularities. We may hope that
the topological approach will permit us to go further. In other respects, the
construction of an algebraic topology based on cones is more complex than the
classical one, but the fact that a non linear triangle remains the assembly of three
1-cones, that several ways to attach cones can be used, suggests that a finer and
a richer theory could be developed. It is worth noticing that a classification of
cones seems to be impossible since it includes the classification of the basis of
cones, which can be cones themselves. That is why I have chosen, after the title
of this article, to symbolize this theory of cones by the drawing of the snake
which bites its tail.

From a pedagogical point of view, the theory is very pleasant: it is accessible
to everybody, permitting the creation of a multitude of 2D and 3D cones,
shapes and compositions, using modelling clay, strings, scissors, paper, pieces
of cardboard, glue, and a brush. Later, software permitting, we may be able
to make these constructions on computers. Using the set of these tools, an
imaginative artist could have already created all the objects that have been
shown on Figure 26 for example.

Via the concepts on which it stands, via the creations it allows, the theory
stands in some sense at the junction of mathematics and art. Through the
constructions he imagines and shapes, born of his hands, the child, the budding
artist will express his dreams, and perhaps will reveal talents which will one
day be expressed in an artistic activity, one of the most original of man, whether
engraved in matter, or simpler and purer worked by the mind.



168 Claude-Paul Bruter

References

[1] C.P. Bruter, “An Introduction to the Construction of Some mathematical Objects”, in Mathe-
matics and Modern Art, C.P. Bruter Ed., Springer 2012, 29-46.

[2] C.P. Bruter, “Morphologie des ensembles de bifurcation associés à des polynômes à une variable
réelle. Applications.” C.R. Acad. Sc. Paris, t. 283 (1976), 651-654.

[3] A. Dürer (trad. Jeanne Peiffer), Géométrie [“Underweysung der Messung”], Éditions du Seuil,
1995 (De Symmetria... and Underweysung der Messung mit dem Zirkel und Richtscheit),
1525-1538. http://www:rarebookroom:org/Control/duruwm/index:html

[4] http://www.math-art.eu/Documents/pdfs/Cagliari2013/Cagliari_II_Bruter.pdf



Index of Authors

APÉRY François
francois.apery@uha.fr
Associate Professor (University of Mulhouse), scientific referee for the collection of
mathematical models at the Institute Henri Poincaré

BRUTER Claude P.
bruter@u-pec.fr
Retired Professor (Université Paris 12). ESMA, c/o Institut Henri Poincaré, 11 rue P. &
M. Curie, 75321 Paris, Cedex 05.

CADDEO Renzo
caddeo@unica.it
Professor (Università degli Studi di Cagliari), Dipartimento di Matematica e Informatica,
via Ospedale 72, 09124 Cagliari, Italia.

CHACON Gerardo R.
grchacon@gmail.com
Assistant Professor, Gallaudet University, 800 Florida Avenue NE, Washington, DC
200002, USA.

COLUCCI Renato
renatocolucci@hotmail.com
Lecturer (Assistant Professor), Xi’an Jiatong-Liverpool University, 111 Ren Ai Road,
Dushu Lake Higher Education Town, SIP, Suzhou, 215123, China.

DE COMITE Francesco
Francesco.De-Comite@univ-lille1.fr
Associate Professor in Computer Science (University of Lille). CRIStAL, bat M3
Info,Université des Sciences de Lille, Cité Scientifique 59655 Villeneuve d’Ascq France.

DENNER Richard
rj.denner@evc.net
Retired mathematics teacher of the secondary school. Webmaster of the ESMA since
2011.

169



170

DUNHAM Douglas
ddunham@d.umn.edu
Department of Computer Science, University of Minnesota, Duluth, MN 55812-3036,
USA.

FRANZONI Gregorio
gregoriofranzoni@gmail.com
Teacher of mathematics in secondary school and university lecturer (Università degli
Studi di Cagliari), Dipartimento di Matematica e Informatica, via Ospedale 72, 09124
Cagliari, Italia.

GIACARDI Livia
livia.giacardi@unito.it
Professor (Università degli Studi di Torino), Dipartimento di Matematica, Via Carlo
Alberto 10, 10123 Torino.

HART George
george@georgehart.com
Stony Brook University, 3 Stony Rd. Stony Brook, NY 11790 USA.

KOZLOV Dmitri
kozlov.dmitri@gmail.com
Research Institute of Theory and History of Architecture and Town-planning, Russian
Academy of the Architecture and Building Sciences21-a 7th Parkovaya St. Moscow,
105264, Russia.

LEGUIZAMON Juan S.
sebasgta@gmail.com
Pontificia Universidad Javeriana, Carrera 7 N.43-82, Bogota, Colombia.

PIU Paola
piu@unica.it
Assistant Professor (Università degli Studi di Cagliari) and co-ordinator for Sardinia of
the Italian Ministry of Education programme “Piano Lauree Scientifiche”, Dipartimento
di Matematica e Informatica, via Ospedale 72, 09124 Cagliari, Italia.

VELICHOVA Daniela
daniela.velichova@stuba.sk
Professor of Applied Mathematics, head of the Institute of Mathematics and Physics,
Slovak University of Technology, Nám. slobody 17, 812 31 Bratislava, Slovakia.


