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Abstract . Practical modeling of spatial surfaces is mooavenient by
means of transformation of their flat developmemizde as topologically
connected kinetic structures. Any surface in 3Dcefapologically consists
of three types of elements: planar fac&s (inear edgesH) and point ver-
texes V). It is possible to identify the first two typefthese elements with
structural units of two common types of transforfeabystems: folding
structures and kinematic nets respectively.

In the paper a third possible type of flat transfable structures with ver-
texes as form-generative units is considered. imdase flat developments
of surfaces are formed by arranged point sets dgiyecontacting crossing
points of some classes of periodic knots and limesle of elastic-flexible
material, so that their crossing points have rédmsisical contacts. A frag-
ment of plane point surface can be reversibly caadeinto a fragment of a
spatial surface with positive, negative or combi&alissian curvature by
means of transformation which saves connectivityvben the points, but
not the distances and angles between them. It wase@ experimentally
that this new form-generative method can be appgletodeling of both
oriented and non-oriented differentiable topolobi2g® manifolds. The
method of form-generation based upon the develophogerties of peri-
odic structures of knots and links may be appl@anany practical fields
including art, design and architecture.



1. Euler's Formula and Two Common Types of KineticSurface
Models

The most general variety of geometry — topologgatis surfaces in
3D space as 2D manifolds: oriented or non-orienitedlas proved
that any oriented manifold is equal to a surface g@iretzel with a
some number of holes in it. The number of holes tiepological in-
variant called “surface genus”, which is equal évozfor a sphere,
one for a torus, two for a pretzel with two holesl &o on. Any 2D
surface can be divided into a number of polygonasimes or facets
(F) with borders or edgesE) between them, which intersect in
points or vertexes\). These three elements of an any surface are in-
terrelated by a simple equation known &sifer's formuld: a num-
ber of vertexes minus a number of edges plus a auwibfacets is
equal to two minus two multiplied by(V —E + F = 2 — 2h), theren

is the surface genus.

Practical modeling of 2D surfaces in 3D space isenumnvenient
by means of transformation of their flat developtsanade as con-
nected kinetic structures. There are two well-kndawmes of such
structures, which are based upon using plaRdrafd linear E)
elements of surface division as their structuraéirants. In the first
case the result is a folding structure — a flaidssheet divided into a
number of planar facet$) with turning linear E) hinges between
them (Figure 1). Flat kinetic folding structure® dhe basic form-
generative principle for different types of transfiable paper mod-
els, including the art of origami.



a. b.

Fig. 1.Flat folding structure as a method of form-genevatof surfaces.

In the second case the structure is a kinematic-reeflat net with
non-triangle meshes assembled of lindgr €dlements with turning
point hinges V) between them. The net can completely lie on a
plane or be transformed fully or partly into spapasition (Fig-
ure 2). The principle of kinematic net structures liaund its wide
application in practical modeling of complex curvedrfaces. In
1878 Russian mathematician P. L. Chebyshev stajadtiens for
flat developments of spherical surfaces made ofidabith square
meshes [1]. In the end of ®Zentury A. Gaudi used the method of
inversion of suspended net models with the aimoomffinding in
architecture. In the middle of Y0century F. Otto started his own
experiments with suspended net models that leadamdhis col-
leagues to a new approach to grid shells buildwegity and a whole
number of architectural masterpieces [2].



Fig. 2.Kinematic net with square meshes as a method wi-f@neration of sur-
faces.

2. Vertex Structures As a New Third Type of KineticSurface
Models

In addition to the planar and linear types of flavelopments of sur-
faces it may be proposed a third possible typ¢aptifansformable
structures with vertexe¥) as form-generative units. Approxima-
tions of a surface by number of points is a commaithod in
mathematics and computer graphics. A separate poihis case is
just a dot in virtual space determined by its nuocawalue in rela-
tion to three Cartesian coordinates.

A physical model of a point can be done as a cowtasvo physical

bodies such as tangent solid spheres or tangemdeys with

non-parallel axis. A number of contact points golane or in space
may be represented as a vertex or point surfagur@B), but to
function as a transformable model of continual atefthe contact-
ing bodies must be connected between them and ineghimto a ki-

nematic structure. The structure is the most ingmrpart of point
models of surfaces because it coordinates behatigreat number
of contact points to provide them with the posgyibf synchro-

nized sliding movement.



Fig.3. A fragment of point surface made of woven resilieds.

This structure is not just a simple sum of neigimmgprkinematic
units like the structures of plandf)(and linear E) models of sur-
faces — it issynergeticin the R. B. Fuller's meaning of the word: a
“behavior of integral, aggregate, whole systemsreaipted by be-
haviors of any of their components or subassemioligbeir com-
ponents taken separately from the whole” [3, p. 3].

3. Resilient Knots and Links as a Structural Princple of Vertex
Surface Models

My own experimental research into different plaiertex models
confirmed that the most natural forms of organizingependent
point contacts into topologically connected struesuare knots and
links [4]. A resilient rod forms an elementary sttwre then its ends
are joined together. As a result the rod becomeasg— a trivial
knot (Figure 4a), and its structural stability depends on theorbg-
tween the diameter of the ring and diameter of ss&tion of the
rod. Then the diameter of the ring is too largeetsist the inner tor-
sion forces in the bent rod, the ring turns intaltle nested loops
(Figure 4,b). If the process of loops emerging is combinedhwit
joining together of the free ends of the rod, tberected rod may
be knotted and take form of the simplest knot GiéfFigure 4,c).



a. b. c.

Fig. 4.a. Resilient ring (trivial knot). b. Double loopittial knot). c. Simplest
knot — trefoil.

The process of “self-knotting” is very typical foong flexible-

resilient strings, such as steel wire or fishingeliNatural string-like
flexible long objects, such as polymeric moleculeduding DNA,

often take circular closed forms of rings and kneitber single or
linked [5]. Knots and links are widespread and ratway of struc-
tural organization for string-like flexible-resihelong objects.

4. Knots on Different 2D Surfaces

The trefoil is a “torus knot”, because it can bageld without any
self-crossings on the surface of a torus (Figut®.5l.ike a trefoil,

there are knots that can be placed on the surf#oather 2D mani-
folds: a ring or trivial knot on a sphere (Figureah “figure eight”

knot — on the surfaces of pretzels with two hokgguyre 5,c) and so
on.



Fig. 5. Knots on 2D manifolds.

The trefoil knot may have two mirror types — a tlebne and a
“right” one. Each of them can be tied on the tosusface without
self-crossings (Figure @, b), but been tied together on the same to-
rus, they inevitably have contact points betweesmtand form a
knotted fabric on torus surface (Figurech, If both knots made of
resilient material and their crossings are reatigtacting, the struc-
ture will represent a model of torus point surface.

Fig. 6. Two mirror trefoils tied together on the same tofoisn a torus point sur-
face.

The contacting points define the model of the sifa namely the
exterior shape, and two mirror knots form its imerstructure. In
the same way it is possible to receive a pointasarfof an arbitrary
pretzel with two mirror pretzel knots of appropedype.



5. Energy of Resilience as Forming Principle of Cyic Knots

Quantity of elastic energy or energy of resiliemtea knotted rod
depends of topological complexity of a knot andkim®wn among
other topological invariants of knots [6]. Thanksthis energy the
central lines of knotted rods tend to coincide vetplain, so all their
crossings tend to be really contacted, that letntfem a model of
flat point surface. The two mirror trefoils on therus surface also
tend to collapse, and if the torus itself disappdathe contacting
points of the two knots would place themselves flaaring-shaped
area. And vice versa: a flat model of point surfageen by a torus
knot or a link, may be transformed into a spatiatesand fixed in it
in order to keep the received shape.

The energy of resilience in knots also defines geomof their
structures. It force a closed resilient rod to takshape of a ring and
a rod of the same material knotted into a trefal shape of a double
turn coil. A coil is a natural shape for any kndttend closed resil-
ient rod defined by its minimal internal energyresilience. At the
same time for some periodic knots [7] like treftlieir coils may be
divided into a number of equal loops or “petalsi:the case of tre-
foil the number of loops is three. Knots of thigpdywith natural
numbers of coil turns and petal loops have a génmemene of
“Turk’s Heads. Simple Turk’s Heads with small numbers of coil
turns and petal loops made of soft non-resilienten such as
rope, have a wide spread in seamen’s practice hasven the field
of decoration and art [8]. It is possible to give thame of €yclic
knots to the Turk’s Head knots made of resilient matebecause
of geometrical structure of their shape. From tpotogical point of
view they are periodic closed braids [9].
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Fig.7. Cyclic knots classified according to numbers ofrthens of coils (p) and
petal loops (q).

All cyclic knots and links can be classified acaagito the numbers
of their turns of coilsf) and petal loopsqgj in the system of or-
thogonal coordinates. The numbgrsand g may be equal to any
natural number: if they are coprime — the strucigra knot (Fig-
ure 7). Here is exactly the same law as for epagist diameters of
their generating circles must be coprime naturahlpers. Ifp andq
are not coprime numbers the structure is a linkafivalent knots,
and number of linked knots is equal to the greatestimon divisor
of p andg.
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6. Form Generative Properties of Cyclic Knots and inks

The possibility to transform a cyclic knot fromftflaosition to a spa-
tial one depends of a sufficient number of its actihg crossings.
This number is determined by numbers of turns afscand petal

loops, and consequently of total resilient energgrmtted rods. In-

creasing of the energy proportionally to the qusndf contacting

crossings leads knots to a new property: from sstpknots like a
trefoil they grow into complicated structures tlbah serve as mod-
els of point surfaces. | gave the nanNODUS structures to these
cyclic knots designed specially for modeling ofrfda and spatial
point surfaces (the worchbdus means a knot in Latin) [10].

A NODUS structure during its transformation chantjeslengths of
the edges of all its facets and angles between.ti&@anks to that
ability, the structure changes its geometry as alevland creates
vertex or point models of the surfaces with anteaby Gaussian
curvature: parabolic, elliptic or hyperbolic. Thekeee types of sur-
faces completely exhaust all possible internal gedes of

two-dimensional manifolds [11]. As contrasted tdicsanodels of

surfaces, that can not change their Gaussian cuegtwithout

breaks and folds, point surfaces of NODUS strustyiermit transi-
tion from positive Gaussian curvature (elliptic)rtegative one (hy-
perbolic) through mediation of neutral (parabola)rvature. The
same NODUS structure can take forms of elliptic &ygerbolic

curvature. A surface of torus is a combinationhese two types of
curvatures together with two intermediate areapawbolic curva-
ture (Figure 8a-c).
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Fig. 8.NODUS structures with elliptic, hyperbolic and candal surface curva-
tures.

A surface of pretzel may be received as a comlminaif several to-
rus structures (Figure 8). It is possible to create many other forms,
for example surfaces with self crossings (Figure, ).
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Fig. 9. Different forms of surfaces received by means dbNSstructures

Also NODUS structures let make fragments of noested 2D
manifolds such as Moebius band with self crossiFigure 10) or
cross-cap — part of projective plane [12].

Fig. 10.An example of one-side surface — a Mdebius bartdseif crossing
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Apart from the transformation of NODUS structurésttchanges
the sign of its curvature and which can be nanwpdlitative trans-
formatior, there is another kind of transformation — tlggi&ntita-
tive” one. This transformation happens as a graduaigihg of nu-
merical value of Gaussian curvature of point sw@fdoom its
minimum to a maximum value without an alteratiortte# curvature
sign. The minimum value of Gaussian curvature mayequal to
zero, and in this case the point surface of a NOBUGcture ap-
proximates a piece of plane. In this case the pooé transforma-
tion represents a continual sequence of changimgsfofor example
from spherical segment through hemisphere to sphe&ig-
ure 11,a-d). The transformation of NODUS structure is a reide
process. Thanks to its form changing, NODUS stinecaccumu-
lates elastic energy and becomes stronger. Eveatiabgorm of
NODUS structure may be strictly fixed by limitatio its mobility
and as a result the transformable structure wdbbee a stable one.
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Fig. 11.Transformation of NODUS structure as continual sssge of changing
shapes.

Polymorphous properties of NODUS structures givartartist or a
designer a suitable tool not only for finding thenthnded form in
space, but also for “tuning” it in environmentidtpossible to envi-
sion in advance a script of development of a plgmant structure
into a surface in three-dimensional space by me&uiferent dis-
positions of modular form-generating structures arplane, by
choice of their connections and by spatial sti@ifons of their con-
tact points.
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Fig. 12.A large-sized NODUS structure in natural environinen

According to my experiments, NODUS structures afida extrapo-
late their structural properties from models t@éasized structures
(Figure 12), that gives a reason to consider théso as form-
generative principle for real-size kinetic architeal structures [13].
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