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APPLETS
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Abstract

This article gives the tools for self-construction of the poly hedral models
which appear during the process of everting the polyhedral sphere. It can
be understood as a pedagogical device to understand the different steps of
that process.

1 Introduction

There are problems which are real challenges. The sphere eversion problem
belongs to that category! How is it possible to exchange the internal and the
external face of a sphere without teaning or folding its surface? At first sight,
it seems impossible! But, by authorizing the surface to cross itself and by
respecting rules established by mathematicians, 1t becomes possible and the
eversion' can be shown on the screen of a computer. At the conference, |
presented pictures of polyhedra imagined by the blind mathematician Bernard
Morin which illustrate the sphere eversion. The approach which is developed
here allowed the discovery of the first eversion of the cuboctahedron. We present
three introductory models which lead directly to the central stage of the eversion.

The starting point of this collection of models is a minimal Boy surface
with 9 vertices inspired by Ulrich Brehm's work [1]. It is a non-orientable
surface which presents a threefold axis of symmetry. Some of its faces intersect
themselves giving birth to an intersection line and a rriple point. The same
construction process can be applied to get a model with a fourfold symmetry
called open halfway-model. Then the surface becomes orientable and has a
quadruple point, The reader is invited to build by himself these two first models.
The third model, called closed halfway-model, reaches the necessary level of
complexity to carry out the eversion of the cuboctahedron, Handmade models,
photos in artificial light and JavaView? applets were used to highlight the thought
of the blind mathematician.

'hetp/torus, math. uiuc. edw/optiverse/
“hetpiwww javaview.de/
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For the exchanges with Morin, we used a closed halfway-model in white
drawing paper, less aesthetic than the one presented here. Impossible to see
inside! The construction had to be improved with transparent faces in rhodoid
and with the use of two different colours (red and blue) for each side of the
opaque faces. Many years later, the models were realized on computer with
Konrad Polthier's software JavaView; all the details of the eversion can be shown.
The two sides of a face can be displayed with two different colours as on the
handmade models. Furthermore, JavaView is able to handle the intersections; the
triple point and the quadruple point are immediately visualized as intersections
of three or four faces.

2 Minimal polyhedral Boy surface

At the beginning of the 1980°s, during summer holidays readings | fell casually
on blind mathematician Bernard Morin's article “Le retournement de la sphére™
[2] illustrated by Jean-Pierre Petit’s drawings in the revue Science. It aroused
my curiosity and I tried to understand step-by-step the sphere eversion’ that
Morin had imagined. A few years later (1986), I met him at the University
Louis Pasteur of Strasbourg. At the end of the formation he invited me, with
other colleagues, in his office to show us a great wire model of the Boy surface
([3). [4]). I immediately recognized — and was fascinated by — the surface |
discovered a few years earlier in his article. After our discussion, he gave me
a letter written by Ulrich Brehm which contained a short description of a Boy
surface with nine vertices. It was a variant of the minimal Boy surface conceived
by Brehm [1] which Morin has adapted to the polyhedral sphere eversion. |
tried to build it briefly and succeeded after a few days.

2.1 Construction of a polyhedral Boy surface

Boy surfaces* are obtained by gluing together a Mébius band® and a disk along
their boundaries. The first model we will describe is Ulrich Brehm's polyhedron®.
Its Mbius band is a three half-tums twisted band: it is a remarkable assembly
of three concave pentagons which is explained below.

The first pentagon Py = Cy Ay By A, B, respects the following conditions :

1. the tnangle 4, B,C, is equilateral,

2. the point By is its orthocenter,

3. the vertex A, is so that the quadrangle C, B, A, B, is a parallelogram.

Thitp/www. lusecium. org/jp-petit/science/maths_f/Retournement_sphere/PLS_79.pdf
“hitp//arpam free. fo The% 20Boy % 20S urface % 20as% 20Architecture % Xand% 20Sculpture. pdf
I hitp//www. mathcurve. comvsurfaces/mobius/mobius. shiml

“hittp//www. mathcurve. comvpolyedres/brehm/beehm. shtmi
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Fig. 1 The pentagonal face
Po and its triangulation.
Note that the three trian-
gles in red are isosceles and
have an angle which mea-
sure is 120°. Simple and
nice! Duning the deforma-
tion the pentagons can be
folded along the sides of
the triangles. This picture
is realized with LaTeX and
the packages pstricks and
pst-3dplot,

Similarly, we construct two other pentagons Py = C, Ay By A2 B> and P =
C, A, B, Ay B,. These 3 pentagons lean towards the faces of a regular tetrahedron

PAA A,
The coordinates of the nine vertices are:
1 V3 1 V3
Ao(l.0.0\)/_ Ay(— EJT_O\)/_ Ag(—i.—;.(::’_
| 2 1 3 2 1 3 2
_:0'_ -® cnmn® e Y LTS p—"
Bo(5:0: ) B"44 ) By

3 3 3 3
Co(—'—£ v2) G 4 v2) C:(-;:—%:ﬁb

-

If we consider the assembly Py U P, U P> we get a polyhedral Mdbius band.
We just have to add 7 tnangles which assembly 1s homeomorphic to a disk (see

Fig. 2-b):

e three dorsal tnangular faces Qp = CoB1 A3, Q) = C,ByAg and Q; =

C; By Ay their intersection is the triple point,

e three ventral triangular faces Ry, = CyA,4,, Ry = CAgA, and R, =

Cy A As,

e and to finish the equilateral tnangle A, 4, A4,.

Fig. 2 Construction of the Boy surface by gluing together a Mobius strip and a disk.
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Fig. 3 Assembly of the Boy surface: scale = 0.4, Notation: oy = P, N0, N Q4.
Bo = PaN Qo N Q4. Begin to bring together O and 0y, along their intersection line
laof1]; then insert Qp into the previous assembly. The trick is easy and you will succeed
quickly. Now add the three pentagons by pushing them through their corresponding slots
laoPo). [y f1] and [az f;] on the dorsal faces: the Mobius strip takes its place. Then,
to finish add the ventral faces Rp, Ry and R;; and if you want to close the model add
a last equilateral tnangle Ao Ay A2 — which has the same size as the tnangle PAp A, -
as bottom face. Enjoy! An important fact to notice here is that the flexibility of the
matenial (paper or rhodoid) is very useful for the assembly.



Polyhedral Eversions of the Sphere 53

A nice description of the construction of the Boy surface and more topolog-
ical reminders are available in Laura Gay's internship report” at the Institute
Camille Jordan in Lyon. See also [6] for Boy surfaces having a higher level of
symmetry.

Fig. 4 Minimal Boy surface with 9 vertices: handmade model and JavaView applet.

3 Open halfway-model

With 4 concave pentagons in vertical position we get a model with 12 vertices:

Ap(3:-3:0) A(3:3:0) Aa(—3:3:0) Ai:(—3:-3:0)
By(3:-3:6) B,(3:3:6) B,(—3:3:6) Bi(—3:-3:6)
Co(3:—15:8)) Cy(15:3:8) Cy(—3:15:8) Cy(—=15;-3:8)

Its 12 faces are P‘ =C‘.4, B,'«‘l,+|8,-|. Q‘ =C‘ B‘+|.",+2 and R; - C,-.“,-,:.“,
where i € Z/4Z.

G

Fig. 5 Open halfway-model: the quadruple point is reachable by passing under the
pentagons.,

" hitp//math.univ-tyon 1 fi/~borrell¥ Jeunes/rapport_de_stage_Laura_Gay.pdf
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A1 Intersection line

H
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5

o

Fig. 6 For the construction of the model ~ and the JavaView applet — all the coordinates

of the points which determine the self-intersection line had to be calculated by solving

several linear systems. Here we have annotated ao = PoN Q3N Q4. flo = PaNQaN Oy,

= QoﬂRoﬂQl and & = QoﬂQl N Ry. They all belong to the plane Q| like the
quadruple point Q (in green).

3.2 Construction of an open halfway-model

Co

Fig. 7 The pentagonal face Py and the ventral face Rg; scale = 0.5. They can be used
as template for the other faces P; and Ry, i = 1,...,3. The geometrical figures are
reproduced with GeoGebra.
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Cy

Fig. 8 The four dorsal faces Qg. Q1. Q2 and (3: scale = 0.5, They have in common
the quadruple point Q. It was crucial to find how to do this assembly.
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3.3 Tips for the mounting of the model

Don’t use simple paper, it will not work easily. Use at least drawing paper which
has a better ngidity.

Fig. 9 Open halfway model: handmade models need ability, precision and perseverance.

The pentagons are obtained by gluing together two cardboard sheets — one side in red for

the one and one side in blue for the other, To work the rhodoid, a steel edge and a fine

cutter are necessary. To mark the rhodoid from the plans, needles and a small hammer

were used. Faces are fixed together with adhesive tape. The self-intersection line is drawn
by using a pencil with permanent ink.

1. Take Q, in your left hand.

2. Take Q) in your right hand, then push Q, into the slot [y, 8] of O; until
the points y, and £, of the two faces are touching each other.

3. Now, take O, in your right hand. Try to insert O, into the slot [y, 8,] of
() and at the same time join (; and (), along the segment |a; ;).

4. To finish the assembly of the quadruple point, take Q5 in your right hand.
The goal is to push Q, through the slot [y, f,] of Q4 and at the same
time Q; and Q5 have to be joined along the segment [uotrz ). Moreover,
O, and Q4 have to be joined along the segment [y, f,]!

There is a trick to do this! The flexibility of the matter here is absolutely
necessary.

The trick consists with your left hand to flatten together Q. and O,
between your thumb and your index finger — level with point fi; ~ so that
they can be pushed together into the slot [a, Q] of Q5 until they reach the
quadruple point Q on (4. Then g, on @, can move towards f, on Q.
a3 on () can move towards a; on (3. f3 on Q3 can move towards S
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on Qq. The quadruple point Q can now be assembled by pushing all the
points in their right position.

5. Add the four pentagons.

6. Add the four ventral faces.

4 Closed halfway-model of the eversion of the cuboctahe-
dron

This model is better suited to realize the eversion than the previous model.

4.1  Description of the construction

Fig. 10 The pentagon Py at the central stage; remember that Qg = Co By A> and
Ro = Cp Az Ag.

On this third model,
1. The four pentagons lean against the lateral faces of the regular pyramid
PAgAy A2 A where the basis is determined by the vertices Ag(1:—1:0),

3
Ay (1:1:0), A;(1:=1:0) and A;(—=1:—1:0) and where the apex is I’(O:O:';).
2. B; € [PA;] and their third coordinate is 1; furthermore | B, € Qs |fo¢

i € Z/4Z. Consequently, the accesses to the quadruple point ( are closed
by the dorsal faces: the halfway-model is said “closed™.
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3. Let Q be the point ©(0:0:~3) and Vi the plane (A:QAq). Then the
coordinates of the vertex C, result from C, = P, N (A, B, B,)NV,.
All the coordinates can then be calculated. The quadruple point is the point
Q(0:0:1).

4.2 Coordinates

Ag(l:=1:0) Ay(1:1.0) Ax(=1:1.0) As(-1:-1.0)
1 1 11 11 1 1
”o(;:—;:l) BM—:;:‘) Bz(—;:;:') B;(——:—;:l)
o1 17 112 LI LI C ?I.I_IZ
ol=3=7:7) GFi-3T 2577 =557

4.3 Decomposition in several geometries with JavaView

Inside a JavaView applet, it is possible to create different geomerries; the
following pictures illustrate this possibility. Pentagonal faces, dorsal faces,
and ventral faces are represented separately for a better understanding of the
maodel. The self-intersection line has also been added after calculation of all the
vertices. We touch here the limits of the software: it could be very useful to have
a software which allows to isolate directly the self-intersection line, specially

Fig. 11 Closed halfway-model; decomposition in different geometries with JavaView.
It is useful to locate the two perpendicular edges [ApA3z] and[A A3] and the square
By B, B, By (in green).



Polyhedral Eversions of the Sphere 59

for the study of its evolution along the eversion. This stays actually out of reach
with JavaView. The next picture shows the same handmade model photographed
in artificial light; the internal subdivision is completely observable. Just under
the quadruple point there is a chamber — completely closed towards the outside
— which has the shape of an octahedron with four ex-growths like four small
teeth. It will be interesting to follow its evolution during the eversion. The
second image represents this internal room with the self-intersection line and
the quadruple point.

Fig. 12 Closed halfway-model of the eversion of the cuboctahedron. Imagined by
Bemard Morin, this model is really the comerstone of this study.

Fig. 13 Internal room under the quadruple point and self-intenection line of the closed
halfway-model
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See also [7] for halfway models with a higher level of symmetry: the article
is illustrated with engravings by Patrice Jeener. The display of the open and the
closed halfway-models was enhanced after mail exchanges with Jean Constant.
He made two artistic pictures® with the use of these models. Enjoy!

5 First eversion of the cuboctahedron

The initial and the final stages of the eversion are obtained by splitting its 6
square faces with 2 orthogonal polar-edges [AyA;] and [A, A;] and with its
equator B, B, B, B, (in green). By doing so, we get a polyhedron which have
exactly the same number of vertices (12), edges (30) and faces (20) as on the
tnangulated halfway-models!

By

(&)

Ay

Fig. 14 Initial and final models of the eversion of the cuboctabedron

On the initial model and on the final model, a same vertex has two antipodal
positions. Each triangular face is transformed in its antipodal face (see for
instance the orientation of the face AoC: Bs on the two models), so one can
observe that the onentation of the faces has changed on the final model.
Similarly, the north polar-edge [A4; A;] on the first model is changed into the
south polar-edge [A, A;] on the second model. Observe that these two edges
are parallel. The same observation can be done with the south polar-edge
[AoA2]. On the second picture, one can also locate the final position of the
pentagon Py = C, A, By A, B,. Now, the four pentagons of the halfway models
are represented by the oscillating belt — composed with 12 triangles — around
the equator! The next picture illustrates the problem of the eversion of the
cuboctahedron and suggests the question: how does it work?

Bernard Monn conceived a step-by-step deformation which deforms the
halfway model by means of elementary transformarions consisting in moving

*hitp//imaginary.org/fr/mode/263
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Fig. 15 Initial, halfway and final models of the eversion of the cuboctahedron

a vertex along an edge of the polyhedron. In all, 22 steps are necessary to
transform the halfway model (step 0) into the final cuboctahedron (in blue).
But, only 6 steps are needed to obtain a model without self-intersection line!
All the models which intervene have a twofold symmetry. What can be done to
get the blue cuboctahedron (final step +22) from the halfway model can also
be done to get the red cuboctahedron (initial step —22). So, if we consider all
the 45 models from the model —22 to the model +22 then we have all the steps
of the eversion!

Fig. 16 First cuboctahedral eversion (Maubeuge 2000). On the picture: Philippe Char-
bonneau.
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A first description of this eversion with annotated pictures is available in my
article “Versions polyédriques du retournement de la sphére™, Retournement
du cuboctagdre'” | wrote for the revue L'Ouvert [8] of the IREM of Strashourg.
In its “Retournement du cuboctaédre™ [5] Frangois Apéry describes an other
eversion which simplifies the previous one with the help of linear interpolations.

6  Conclusion

Three models with increasing complexity mark out the way towards the central
stage of the eversion of the cuboctahedron. The halfway model represents an
ideal point to start the study of the eversion. By building some models, the
reader gives himself means to understand better what occurs during a sphere
eversion. Animations with JavaView were also realized. Three of them were
presented at the conference. This article reminds the long way of maturation and
perseverance which preceded their achievement. It is also an encouragement
to all those who think that they don’t understand maths to believe in their own
capacities and to develop them!

Acknowledgments

I would like to thank all the persons who permitted the realization of this
work. At first Bernard Morin for all his generous explanations, Frangois Apéry,
Claude-Paul Bruter, Jean Constant for their advices, Konrad Polthier and Ulrich
Reitebuch for their help to use JavaView and ESMA for offering a platform
from which to share with my peers, colleagues and the public at large.

References

[1] U. Brehm, Minimal Polyhedral Versions of the Boy Surface, Prepaint Reibe Mathematik.,
Technssche Universitat Berlin (1988), no. 189.

2] B. Morin et J.-P. Petit, “Le retournement de la sphére”, Powr la Science, 15, (1979)

3] E Apéry. “Constructing Wire Models, Mathematics and Art, Mathematical Visualization™ in
Art and Edwcation (C.P. Bruter ed.), Springer-Verlag, 2002, 179-200.

[4] E Apéry, Models of the Real Projective Plane: compuaer graphics of Seiner and Boy surfaces,
Wieshaden: Vieweg, (1987

“http://mathinfo.unistra. o/ fileadmin/upload/ TREM/ Publications/L_Ouvertn094/0_94_32-
45.pdf

19http://meathinfo.unistra fo fileadmin/upload/ IREM/ Publications/L._Ouvervn095/0_95 15-
36.pde



