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1. Introduction

Many medieval Islamic mosques and palaces are adorned with highly intricate
geometric ornaments. These decorations have inspired modern artists and art his-
torians, and they have been discussed in connection with modern mathematical
concepts such as crystallographic groups and aperiodic tilings. The Islamic orna-
mental patterns can certainly be used to illustrate such modern notions.

Medieval Islamic civilization has also left us an impressive written heritage in
mathematics. Hundreds of Arabic and Persian mathematical manuscripts have
been preserved in libraries in different parts of the world. These manuscripts
include Arabic translations of the main works of ancient Greek geometry such
as the Elements of Euclid (ca. 300 BC) and the Conics of Apollonius (ca. 200
BC), as well as texts by medieval authors between the eighth and seventeenth
centuries, with different religious and national backgrounds. In what follows I will
refer to ‘Islamic’ authors and ‘Islamic’ texts, but the word ‘Islamic’ will have a
cultural meaning only. Most ‘Islamic’ mathematical texts were not related to the
religion of Islam, and although the majority of ‘Islamic’ authors were Muslims,
substantial contributions were made by Christians, Jews and authors with other
religious backgrounds who lived in the Islamic world.

Many Islamic texts on geometry are related to spherical trigonometry and as-
tronomy, and most Islamic scholars who studied the Elements of Euclid were study-
ing in order to become astronomers and possibly astrologers. Yet there are also
Islamic works on geometrical subjects unrelated to astronomy. In almost all me-
dieval Islamic geometrical texts that have been published thus far, one does not
find the slightest reference to decorative ornaments. This may be surprising be-
cause the authors of these texts lived in the main Islamic centers of civilization
and may have seen geometric ornaments frequently.

∗
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In this paper we will see that the Islamic geometric ornaments were in general
designed and constructed not by mathematician-astronomers but by craftsmen
(Arabic: s.unnāc.) Our main question will be as follows: what kind of mathematical
methods, if any, did these craftsmen use, and to what extent did they interact
with mathematician-astronomers who were trained in the methodology of Greek
geometry? We will discuss these questions on the basis of the extant manuscript
material, which is very fragmentary. In sections 2-5 we will discuss four relevant
sources, and we will draw our conclusions in the final section 6. For reasons of
space, we will restrict ourself to plane ornaments and pay no attenion to decorative
patterns on cupolas and to muqarnas (stalactite vaults).

2. Abu’l-Wafā’

We first turn to the “book on what the craftsman needs of the science of geom-
etry”1 by the tenth-century mathematician-astronomer Abu’l-Wafā’ al-Būzjān̄ı.
This work contains some information on the working methods of the craftsmen,
which will be useful for us in Section 4 below. Abu’l-Wafā’ worked in Baghdad,
one of the intellectual centers of the Islamic world. He dedicated his booklet to
Bahā’ al-Dawla, who ruled Iraq from 988 to 1012, and who apparently employed
mathematicians as well as craftsmen at his court. Almost all of the booklet consists
of ruler and compass-constructions belonging to plane Euclidean geometry. They
are explained in the usual way, that is, by means of geometric figures in which the
points are labeled by letters, but without proofs. Abu’l-Wafā’ says that he does
not provide arguments and proofs in order to make the subject more suitable and
easier to understand for craftsmen [1, 23].

The booklet consists of eleven chapters on (1) the ruler, the compass and the
gonia (i.e., a set square); (2) fundamental Euclidean ruler-and-compass construc-
tions, and in addition a construction of two mean proportionals, a trisection of
the angle, and a pointwise construction of a (parabolic) burning mirror; (3) con-
structions of regular polygons, including some constructions by a single compass-
opening; (4) inscribing figures in a circle; (5) circumscribing a circle around figures;
(6) inscribing a circle in figures; (7) inscribing figures in one another; (8) division
of triangles; (9) division of quadrilaterals; (10) combining squares to one square,
and dividing a square into squares, all by cut-and-paste constructions; and (11)
the five regular and a few semi-regular polyhedra. Abu’l-Wafā’ does not mention
geometric ornaments.

Most of the information on the working methods of craftsmen is contained
in Chapter 10. In that chapter, Abu’l-Wafā’ reports about a meeting between
geometers and craftsmen in which they discussed the problem of constructing a
square equal to three times a given square (for an English translation see [16, 173-
183]). The craftsmen seem to have had three equal squares in front of them and
wanted to cut them and rearrange the pieces to one big square. The geometers

1Incomplete French and German versions are to be found in [21] and [20]. The complete
version in Arabic is in [1] and in facsimile in [18].
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easily constructed the side of the required big square by means of Euclid’s Elements,
but were unable to suggest a cut-and-paste construction of the big square from
the three small squares. Abu’l-Wafā’ presents several cut-and-paste methods that
were used by the craftsmen, but he regards these methods with some disdain
because they are approximations. Abu’l-Wafā’ was trained in Euclid’s Elements
and therefore he believed that geometry is about infinitely thin lines and points
without magnitude, which exist in the imagination only. He complains that the
craftsmen always want to find an easy construction which seems to be correct to the
eyesight, but that they do not care about a proof by what Abu’l-Wafā’ calls “the
imagination.” He declares that the constructions that can be rigorously proven
should be distinguished from approximate constructions, and that the craftsmen
shoud be provided with correct constructions so that they do not need to use
approximations anymore.2 We do not know how the booklet was received but the
16th-century Persian manuscript which we will study in Section 4 contains a rich
variety of approximate constructions.

3. The Topkapı Scroll

The craftsmen themselves seem to have left us with very few documents about their
activities in the field of geometric ornamentation. The most important published
example is the so-called Topkapı Scroll, which is now preserved in the Topkapı
Palace in Istanbul, and which has appeared in the magnificent volume [14]. This
29.5 m long and 33 cm wide paper scroll is undated and may have been compiled
in Northwestern Iran in the 16th century, but the dating is uncertain. The scroll
consists of diagrams without explanatory text. Many of these diagrams are related
to calligraphy or muqarnas and therefore do not concern us here. Some of the
diagrams concern plane tilings. I have selected one non-trivial example in order to
draw attention to the characteristic (and frustrating) problems of interpretation.
The drawing on the scroll [14, p. 300] consists of red, black and orange lines, which
are indicated by bold, thin and broken lines respectively in Figure 1 (for a photo
of the manuscript drawing see also [17]). The broken lines in Figure 1 define a set
of five tiles, called gireh-tiles in the modern research literature, from the Persian
word ḡıreh, which means knot. The thin lines form a decorative pattern which
can be obtained by bisecting the sides of the gireh-tiles, and by drawing suitable
straight line segments through the bisecting points. It is likely that the pattern was
designed this way, but one cannot be sure because the scroll does not contain any
explanatory text. The gireh tiles of Figure 1 have drawn recent attention because
they can be used to define aperiodic tilings. In the absence of textual evidence, it
is impossible to say whether the craftsmen had an intuitive notion of aperiodicity
(for a good discussion see [8]).

2Note that Abu’l-Wafā’ presents an approximate construction of the regular heptagon by ruler
and compass. Just like many of his Islamic contemporaries, he probably believed that the regular
heptagon cannot be constructed by ruler and compass.
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Figure 1. Drawing by Dr Steven Wepster.

4. An anonymous Persian treatise

One would like to have a medieval Islamic treatise, written by a craftsman, in which
the design and construction of ornaments is clearly explained. Such a treatise has
not been found, and thus far, only a single manuscript has been discovered in which
diagrams on geometrical ornaments are accompanied by textual explanations. In
this section we will discuss what this manuscript can tell us about the main question
in the beginning of the paper. The manuscript is a rather chaotic collection of 40
pages of Persian text and drawings (for some photos see [14, 146-150]). The text
consists of small paragraphs which are written close to the drawing to which they
refer, and although the texts and drawings appear in a disorganized order and may
not be the work of a single author, I will consider the collection as one treatise.3

It may have been compiled in the sixteenth century, although some of the material
must be older as we shall see.

The treatise belongs to a manuscript volume of approximately 400 pages [5, 55-
56]. Some of the other texts in the manuscript volume are standard mathematical
works such as an Arabic translation of a small part of Euclid’s Elements. But the
treatise itself does not resemble a usual work by a mathematician or astronomer in
the Islamic tradition. I believe that the treatise is the work of one or more craftsmen
because it agrees with most of what Abu’l-Wafā’ says about their methodology.
The treatise provides much additional information on the working methods of the
craftsmen and it also shows that they were really involved with the design and
construction of geometrical ornaments. In order to illustrate these points, I have
selected the following four examples 4.1 through 4.4 from the treatise.

3The treatise was translated into Russian [6, 315-340] and modern Persian [2, 73-93], and
a full publication of it with English translation was planned by Alpay Özdural (cf. [15]), who
unfortunately passed away in 2003 before he completed the project. The Persian text is scheduled
to be published, with translation and commentary, by an interdisciplinary research team in 2013.
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4.1. The treatise contains many approximation constructions, including a series
of ruler-and-compass constructions of a regular pentagon by means of a single
compass-opening. In these constructions, the compass opening is assumed to be
either the side of the required regular pentagon, or the diagonal, the altitude, or
the radius of the circumscribing circle. Here is one such construction with my
paraphrase of the manuscript text [12, 184b]. Figure 2 is a transcription of the
figure in the manuscript, in which the labels (the Arabic letters alif, bā’, . . . ) are
rendered as A, B, . . . , and Hindu-Arabic number symbols are represented by their
modern equivalents. The Persian text says:

A

H
ED

B

15

6
4

15
99

5

21

21
Z

G

6

Figure 2

“On the construction of gonia 5 by means of the compass-opening of the radius,
from gonia 6. On line AG describe semicircle ADG with center B. Then make
point A the center and describe arc BE. Then make point G the center and on
the circumference of the arc find point D and draw line AD to meet arc EB at
point Z. Draw line GZ to meet the circumference of the arc at point H. Join lines
AH,GH.4 Each of the triangles AZH, GZD is gonia 5, and the original triangle
ADG was gonia 6, . . . ”

Points A,E, D and G are four angular points of a regular hexagon, and DH is
the side of the regular pentagon inscribed in the same circle. The construction is a
good approximation,5 but it is not exact so Abu’l-Wafā’ would not have approved
it. In Chapters 3 and 4 4 of his booklet, Abu’l-Wafā’ provided exact constructions
of the regular pentagon using a fixed compass-opening. The gonia is mentioned
by Abu’l-Wafā’ as an instrument used by craftsmen. From the Persian treatise we
infer that gonia n is a set square with angles 90o, 180

n

o and 90− 180
n

o. In Figure 2,
angles are expressed in units such that 15 units are a right angle. In the Islamic
tradition, the division of the right angle into 90 degrees, subdivided sexagesimally,
was only used in mathematical astronomy and mathematical geography.

4Instead of GH the manuscript says incorrectly DH.
5This is easily shown by modern elementary geometry. Suppose that the radius of the circle is

1, and drop a perpendicular ZP onto AG. Then ZA = 1, ∠ZAP = 30o, ZP = 1
2
, AP =

√
3

2
, GP =

2−
√

3
2

, ∠ZGP = arctan ZP
GP

≈ 23.8o. Because ∠DGP = 60o, ∠ZAH = ∠ZGD ≈ 36.2o.
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4.2. Abu’l-Wafā’ says that the craftsmen are interested in cut-and-paste con-
structions, and the Persian treatise contains many such constructions. Some of
these are explained by one or more paragraphs of text, but the following example
is presented without accompanying text.

3

1
22

5

4

5

4

3
2

1

5

1

2
3

4

4

5

1

3

Figure 3

Figure 3 displays a regular hexagon and an isosceles triangle, dissected into
pieces such that both figures can be composed from these pieces. Figure 3 is
derived from the manuscript [12, 197a] with the difference that I have arbitrarily
assumed the isosceles triangle to be equilateral, and I have drawn the figure in
a mathematically correct way. In the manuscript, the pieces are indicated by
numbers (as in Figure 3) so the correspondence is clear. Since there is no text in
the manuscript, the reader does not have a hint how exactly the pieces have to
be cut. I invite the reader to work out the details for himself. After this exercise,
she or he will probably be convinced that the manuscript was intended to be used
under the guidance of a competent teacher who could provide further information.
It should be noted that the pieces no. 1 and 2 in the manuscript are drawn in
such a way that no. 1 is wider than no. 2. This may happen if the vertex angle of
the isosceles triangle is less than 54o; figure 4 has been drawn for a vertex angle
of 360

7

o. It is tempting to assume that the craftsmen had a general dissection of
an isosceles (rather than an equilateral) triangle in mind, but because there is
no accompanying text, one cannot be sure. The construction is mathematically
correct but there are also approximate cut-and-paste constructions in the Persian
treatise.

It is not necessary to assume that the fancy cut-and-paste construction of Figure
3 and 4 was used in practice. Just like European arithmetics teachers in later
centuries, Islamic craftsmen may have challenged one another with problems which
surpassed the requirements of their routine work.
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1

5

4

3

4

5 5

1 1

22

4

3

4

2 2
1

33

5

Figure 4

4.3. The many drawings of geometric ornaments in the Persian treatise show
that its authors were deeply involved with the design and construction of orna-
mental patterns. I have selected an example which is also found on a real building,
namely the North Cupola of the Friday Mosque in Isfahan, which was built in
the late eleventh century. The Persian text laconically introduces the ornamental
pattern as follows ([12, 192a], [14, 148]) with reference to Figure 5.6

B

T
I

H

K
M

S

N

D

Z

F

C O G E

A

L

Figure 5

“Make angle BAG three sevenths of a right angle. Bisect AG at point D. Cut
off BE equal to AD. Produce line EZ parallel to AG. Draw line TI7 parallel
to BE, bisect TE at point H, and make TI equal to TH. Extend EI until it
intersects AB at point K. Produce KL parallel to BE. With center Z draw
circular arc KMN in such a way that its part KM is equal to MN . On line AF
take point S and that is the center of a heptagon. Complete the construction, if
God Most High wants.

Or construct angle ELN equal to angle ELK and by means of line LN find
the center S.

6Broken lines in Figure 5 also appear as broken lines in the manuscript.
7The text does not make clear that T is an arbitrary point on segment EZ.
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Or cut off EO equal to EL, so that O is the center of a heptagon. And make
line OS parallel to GA and equal to AG8 Then point S is the center of another
heptagon. Or else let GO be equal to AS. God knows best.”

P

P

P

P

P

Q

P

P

PHH

Figure 6

The text does not inform the reader what should be done with the completed
figure. Apparently the rectangular figure in the manuscript and its mirror image
should be repeated as suggested by figure 6. Thus one obtains the pattern in the
north cupola of the Friday Mosque.9

The pattern can be linked to gireh tiles such as in Figure 1 above. These gireh
tiles are not mentioned explicitly in the Persian treatise; all information in the
treatise about figure 5 is contained in the passages quoted above. Let α = 1

7×180o

and take as gireh tiles two types of equilateral hexagons with equal sides (thin lines
in figure 6), of type P with angles 4α, 5α, 5α, 4α, 5α, 5α, and of type Q with angles
4α, 4α, 6α, 4α, 4α, 6α. Now draw suitable lines through the midpoints of the sides,
in such a way that the “stars” inscribed in P and Q emerge, with angles 2α at the
midpoints of the sides of the gireh tiles. The heptagons H in figure 6 are regular.
Pattens with regular heptagons are rarely found on Islamic buildings so the pattern
in the manuscript and on the North Cupola probably go back to the same designer
or designers. The pattern on the North Cupola of the Friday Mosque consists of
the thick lines in Figure 6 with some additional embellishments but without the
gireh tiles in Figure 6.

4.4. My fourth and final example from the Persian treatise will reveal some
information about the relationship between craftsmen and Islamic mathematician-
astronomers who had been trained in Greek mathematics. As an introduction,
consider a pattern from the Hakim Mosque in Isfahan (Figure 7). The pattern is
inspired by a division of a big square into a small square and four kites.10 Two of
the angles of each of the kites are right angles.

8The manuscript has AD by scribal error.
9For a photograph see [9].

10See [7]. The pattern is inscribed with calligraphy: Allāh in the central square and Muh.ammad
and cAl̄ı in the four kites.
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Figure 7

Z

E

T

B

P

S

H

Q

R

C

U

Figure 8

Figure 8 is a partial transcription of a figure in the Persian treatise [12, 189b],
but the labels and broken lines are my own additions.11 The figure displays a big
square with side ZP , subdivided into a small square with side RQ, and four big
kites such as EQTZ and RTPU , each with two right angles, and with pairwise
equal sides (QE = EZ, QT = TZ, RT = TP, RU = UP ). Note that the four
longer diagonals of the big kites also form a square with side ET , which I call
the intermediate square. In the special case of Figure 8, the side QR of the small
square is supposed to be equal to the distance RB between each angular point of
the small square and the closest side of the intermediate square. Then each big
kite such as EQTZ can be divided into two right-angled triangles BRT, BCT , and
two small kites such as EQRB, EBCZ with two right angles and pairwise equal

11I have labelled the points in Figure 8 to highlight the correspondence with Figure 10 below.



10 Jan P. Hogendijk

sides (EQ = EB, RQ = RB, EB = EZ, CB = CZ). Thus we have four big kites
and eight small kites, and for easy reference, I will call the resulting division of the
big square the twelve kite pattern.

Almost a quarter of the Persian treatise is somehow devoted to the twelve
kite pattern. If we draw perpendiculars ZH and RS to ET and TU respectively,
ZH = RS = BT . The two sides EZ and EB of the small kite EBZC are also
equal, so in the right-angled triangle EZT we have ZH+EZ = ET. The twelve kite
pattern can be constructed if a right-angled triangle (such as EZT ) can be found
with the property that the altitude (ZH) plus the smallest side (ZE) is equal to the
hypotenuse (ET ). The text states that “Ibn-e Heitham” wrote a treatise on this
triangle and constructed it by means of two conic sections, namely “a parabola
and a hyperbola”. No further details are given, and no conic section is drawn
anywhere in the Persian treatise. But the text contains a series of approximation
constructions of the twelve kite pattern, such as the following [12, 189b] (Figure
9). The text reads:

H

Z

5

D E

ABL

K

G

X

WV

Y

F

Figure 9

“Line AD is the diagonal of a square. The magnitudes of AB,BG are equal
and AD is equal to AB. Find point E on the rectilinear extension of line GD.
Then each of EZ, ZH is equal to AG. Join line GH and through point K draw
line KL parallel to GH. Find point L, the desired point has now been obtained.”

The approximation is sufficiently close for all practical purposes: if the side of
the square is 1 meter, the difference between the correct and approximate positions
of L is only a few millimeters.12 It does not follow that the approximation presup-
poses a deep mathematical knowledge. In the figure in the manuscript, the eight

12If the side of the ”square” in the beginning is set equal to 1, we have AD =
√

2, AG =
2
√

2, AE
AG

= 1
2
√

2−1
so AE = 1

7
· (8+2

√
2), AZ = 1

7
· (8+16

√
2), ∠ZGA ≈ 57.12 . . . ≈ 57o7′. Note

that ∠ZGA in figure 9 corresponds to α = ∠ZET in Figures 8 and 10.
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small kites are all subdivided into three even smaller kites with pairwise equal sides
and at most one right angle. In Figure 9 the subdivision is indicated by broken
lines in only one kite V WXY (these labels are mine) in the upper left corner. One
may guess that FV = 1

2V W and note that F is located on the bisector of angle
WV Y . The first step of the approximation boils down to the construction of a
triangle ADG similar to V FW .

For further details on the Persian treatise we refer to the planned edition with
translation and commentary which is scheduled to appear in 2013.

5. Mathematicians on the twelve kite pattern

The reference to “Ibn e-Heitham” in the Persian treatise shows that the twelve
kite pattern was also studied by mathematician-astronomers. We will now discuss
what is known about these studies because they will give us some further hints
about the interactions between mathematician-astronomers and craftsmen. “Ibn e-
Heitham” is a Persian form of Ibn al-Haytham (ca. 965-1041), a well-known Islamic
mathematician-astronomer who was interested in conic sections. His treatise on
the twelve kite pattern has not been found but one of the extant works of the
famous mathematician-astronomer and poet cUmar Khayyām (1048-1131) is also
of interest here. The work is written in Arabic and entitled “treatise on the division
of a quadrant”. It begins in the following uninspiring way (Figure 10, [10, 73]):
“We wish to divide the quadrant AB of the circle ABGD into two parts at a point
such as Z and to draw a perpendicular ZH onto the diameter BD in such a way
that the ratio of AE to ZH is equal to the ratio of EH to HB, where E is the
center of the circle and AE is the radius.” Khayyām does not give the slightest
indication of the origin or relevance of this problem. He draws the tangent to the
circle at Z, which tangent intersects BE extended at T , and he shows that in the
right angled triangle EZT , the sum of the altitude ZH plus the shortest side ZE
is equal to the hypotenuse ET .13 Thus the problem is inspired by the twelve kite
pattern, but Khayyām does not mention the relationship with this pattern or with
geometric ornamentation in general. In a new figure (not rendered here), Khayyām
puts, in the notation of Figure 10, EH = 10 and ZH = x, so ZE =

√
100 + x2 and

by similar triangles HT = x2

10 . He then shows that the property ZH + EZ = ET
boils down to the cubic equation x3+200x = 20x2+2000, or in a literal translation
of his words: “a cube and two hundred things are equal to twenty squares plus
two thousand in number” [10, 78]. He then proceeds to construct a line segment
with length equal to the (positive) root x of this equation by the intersection of
a circle and a hyperbola. An anonymous appendix [10, 91] to Khayyām’s text
contains a direct construction of point Z in figure 10 as a point of intersection of
the circle and the hyperbola through point B whose asymptotes are the diameter

13Proof: In Figure 10 by similar triangles EH : EZ = EZ : ET , and because EZ = EB we
have EH : EB = EB : ET and therefore EH : (EB − EH) = EB : (ET − EB), that is to
say EH : HB = EB : BT . By assumption EH : HB = AE : ZH so because AE = BE also
EH : HB = EB : ZH. We conclude ZH = BT , so EZ + ZH = EB + BT = ET .
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AEG and the tangent GM (broken lines in figure 10). None of this was relevant to
a craftsman who wanted to draw the twelve kite pattern, and Khayyām declares
that numerical solutions of the cubic equation could not be found. In order to find
a numerical approximation of arc ZB, Khayyām rephrases the problem about the
quadrant in trigonometrical form as follows: to find an arc such that “the ratio of
the radius of the circle to the sine of the arc is equal to the radius of the cosine
to the versed sine.” In modern terms, if α = ∠ZET and the radius is 1, the ratio
AE : ZH = EH : BH is equivalent to 1 : sin α = cos α : (1 − cos α). Khayyām
says that this problem can be solved by trial and error using trigonometrical tables
and that he found in this way α ≈ 57o, and if AE = 60 then ZH ≈ 50, EH ≈ 32 2

3
and BH ≈ 27 1

3 . He also says that one can solve the problem more accurately.
Using the trigonometrical tables that were available in his time, he could have
computed the required arc in degrees and minutes by linear interpolation.14 This
information on sexagesimal degrees and minutes may not have been of much use
to craftsmen as we have already seen in 4.2 above. We may also compare with a
reference by the Iranian mathematician and astronomer Al-B̄ırūn̄ı (976-1043) in a
work on the qibla (direction of prayer towards Mecca). Al-B̄ırūn̄ı computes the
qibla at Ghazni (Afghanistan) by trigonometrical methods as 70 degrees and 47
minutes West of the South point on the local horizon. He then adds a ruler-and-
compass approximation construction for “builders and craftsmen,” who “are not
guided by degrees and minutes” ([4, 286], compare [3, 255-256]).

B
H E

A
Z

T

M

D

G

Figure 10

6. Conclusion

We now return to the main question in the introduction to this paper. Because
the evidence is so scarce, it is not clear to what extent we are able to generalize
the information which we can obtain from the available manuscript sources. But
if this can be done, the following may be suggested about the main differences

14If we use modern methods and put x = tan α, we have HZ = 10x if HE = 10. so 10x is a
root of Khayyām’s cubic equation, and therefore x3 + 2x = 2x2 + 2. The equation is irreducible
over the rational numbers, so the twelve kite pattern cannot be constructed by ruler and compass.
The equation has one real root x = 1.54369 . . . so α ≈ 57.06o ≈ 57o4′.
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between Islamic craftsmen who designed and constructed ornaments, and Islamic
mathematician-astronomers who were trained in Greek geometry:

• mathematician-astronomers worked with geometric proofs in the style of Eu-
clid’s Elements. Craftsmen were familiar with the Euclidean way to draw
figures, using letters as labels of points (but also the number 5 in Figure
9 above). Craftsmen did not use geometric proofs and they had not been
trained in the methods of Euclid’s Elements.

• Texts written by mathematician-astronomers usually contain sufficient expla-
nation to understand the mathematics. An oral explanation is not absolutely
necessary. Texts and diagrams by craftsmen are often ambiguous, and oral
explanations were essential.

• mathematician-astronomers distinguished between exact and approximate
geometrical constructions. Craftsmen did not distinguish between these con-
structions if the result was acceptable from a practical point of view.

• Craftsmen used some geometrical instruments not found in the theoretical
works of Greek geometry, such as a set-square and a compass with fixed
opening.

The following relationship between craftsmen and mathematicians may be sug-
gested. Mathematicians such as Ibn al-Haytham and cUmar Khayyam may have
regarded the designs of craftsmen as hunting ground for interesting mathematical
problems. Thus the twelve kite pattern led to construction by means of conic sec-
tions, as in figure 10 above. These constructions were a favorite research topic in
the tenth and eleventh century among Islamic mathematicians who had studied
the Conics of Apollonius (ca. 200 BC). However, Khayyām did not reveal that his
geometric construction problem was inspired by a decorative ornament.15 Other
Islamic geometric problems may also have a hitherto unidentified historical context
related to ornaments.

The craftsmen knew that the mathematicians had worked on some problems re-
lated to ornamentation and they regarded the solutions with respect, even though
they probably did not understand the details and technicalities. The Persian trea-
tise states [12, 185a] that the construction of a right-angled triangle such as EZT
in Figure 8 “falls outside the Elements of Euclid” and requires the “science of conic
sections”. No drawing of a conic section occurs anywhere in the Persian treatise.

Of course we cannot exclude the possibility that a few mathematicians were also
involved in the design and construction of geometric ornaments. The heptagonal
pattern in Figure 6 is explained in our treatise in the language of the craftsmen,
but since cUmar Khayyām lived in Isfahan at the time that the North Cupola
was built, it is possible that he was somehow involved in the design. That a

15When Khayyam’s text on the division of the quadrant was published in 1960 [13] and in 1981
[10], the modern editors had no way of knowing that the problem was inspired by ornaments.
Around 1995 Özdural discovered the connection as a result of his study of the anonymous Persian
treatise [15].
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combination of mathematical learning and manual skill was possible in Islamic
civilization is shown by the case of Abū H. āmid al-Khujand̄ı (ca. 980), who was
trained in Greek geometry and astronomy, authored a number of geometrical and
astronomical works, and was also a superb metal-worker.16

The source materials that we have discussed in this paper give a fascinating
glimpse into a design tradition about which little is known. Our knowledge is based
to a large extent on one single Persian manuscript which is now preserved in Paris.
It is likely that a systematic search in manuscript libraries in the Islamic world
will produce many more relevant documents, and lead to a significant increase in
our insight into the working methods of the medieval Islamic craftsmen.

Acknowledgement. I thank Viktor Bl̊asjö for his comments on a preliminary
version of this paper.
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