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Abstract. To solve a polynomial you need a means of breaking its symmetry.
In the case of a generic equation of degree n, this is the symmetric group S,. If
we extract the square root of the polynomial’s discriminant, the group reduces to
the alternating group A,. An iterative algorithm for solving the equation has two
ingredients:

— Geometric: a complex projective space S upon which the polynomial’s sym-
metry group acts faithfully

— Dynamical: a mapping of S that respects the group action—sends group-
orbits to group-orbits.

This paper discusses these two aspects in the cases of the fifth and sixth degree
equations. Motivating the project is a desire to develop an algorithm wiht especially
elegant qualities.

0 Preliminary Background

Polynomials

One of the basic objects of mathematical study is the polynomial in one vari-
able: an expression made up of arithmetic combinations of numbers (coeffi-
cients) and an unknown quantity (the variable). For instance, the expression

22 —3z+2

is a polynomial of degree two (the degree is the highest apparent power of
the variable z).

Mathematicians have produced a long history of developing methods for
solving polynomial equations: finding numbers that make the polynomial take
on the value zero when they replace the variable. In the example above, the
numbers 1 and 2 solve the equation

22 —-3z+2=0.

A polynomial has as many solutions—also called roots—as its degree, pro-
vided that you count them properly and allow yourself to use complex num-
bers.



There is a correspondence between a polynomial and its roots—the roots
determine the polynomial. If you know the roots, then, essentially, you know
the polynomial. So, we can think of a polynomial in a geometric way. In our
example, the two points (1,2) and (2, 1) in a 2-dimensional space of ordered
pairs of numbers correspond to the same polynomial. We can switch the
coordinates of either of these points and get a different point but the same
polynomial. In this way, every polynomial has symmetry; if you increase the
degree, the dimension of the space of roots and the amount of symmetry also
increase..

Projective Space

The set of points described by an ordered collection of two complex numbers
(x,y) is called C? or 2-dimensional complex space. By treating the lines
through the point (0,0) as points, this space projects to a 1-dimensional
space CP! (called complex projective 1-space or the complex projective line).
The same structure holds in a complex space of any dimension. Thus, the
3-dimensional C? projects to the 2-dimensional space CP?, etc.

If we restrict our attention to points whose coordinates are real numbers,
we get real projective spaces RP', RP?, etc. Since it takes two real numbers
to specify a complex number (for example, 1 + 2 where ¢ is a square root
of —1), a complex space has two times the number of “real dimensions”
as the corresponding real space. So, the complex space CP? has six real
dimensions (three complex dimensions) whereas, the real space RP? has three
real dimensions.

Symmetric and Alternating Groups

Given a number n of things, there are n! = n-(n—1)-...-3-2 ways of arranging
them. A way of getting from one arrangement to another is a permutation
of the objects. The set of all permutations of n things forms an object with
algebraic structure called a group—specifically, the symmetric group S,. A
polynomial of degree n typically has S,, symmetry—the basic idea is that you
can permute the roots in n! different ways without changing the polynomial.

The simplest permutation is to exchange two things and leave the other
things alone. We can express every permutation as a succession of such trans-
positions. The permutations that decompose into an even number of trans-
positions also form a group—the alternating group A,,. The number of per-
mutations in A, is half the number in S,,.

Group Actions

When you have a set of objects S that you can move around based on the
structure of a group, you are using a group action. In the case of solutions
to polynomials of degree five, you can move the points in C® (the set S in



this case) that correspond to the roots by permuting their coordinates. For
instance, transform the point (1,2, 3,4, 5) into (2,1, 5, 3,4) by exchanging the
first two coordinates and “cycling” the third, fourth, and fifth coordinates.
We say that you are “acting on” C® with the symmetric group Ss. If you use
only the even permutations, you are acting on C® with the alternating group
As.

The orbit under a group action of an element in S is the set of objects in
S to which the element moves when you transform it according to all of the
group elements. For example, under the symmetric group Sz, the orbit of the
point (1,2,3) is

(1,2,3), (3,1,2), (2,3,1), (2,1,3), (3,2,1), (1,3,2).

Finally. a group action is faithful when no two elements of the group
move the objects in the same way. For example, the permutation group S,
is faithful.

Maps

An operation that takes each point in a space A and associates it with a
point in another space B is called a mapping (or map) from A to B. In this
discussion, our interest is in maps from a space to itself (when B = A). To
illustrate, take a point (x,y) in a 2-dimensional space and “send it to” the
point each of whose coordinates are the squares of the original:

(may) — ($27y2)‘
Here, the arrow means “goes to” so that
(273) — (479)
(_lai) — (15_1)
(1+14,2—1) — (24,3 — 41).

This sort of map is a dynamical system, meaning that you can iterate its
behavior—apply it repeatedly. For instance,

(2,3) — (4,9) — (16,81) —» ---

1 Introduction—Polynomials, Symmetry, and
Dynamics

When n is less than 5, the symmetric groups S, act faithfully on the complex
projective line CP'—this space has the structure of a sphere. Corresponding
to each action is a map whose dynamics provides for an algorithmic solution
to a given nth-degree equation. By ‘dynamics’ we mean the process of apply-
ing a map repeatedly (iteratively) to points. For instance, Newton’s method



provides a direct iterative solution to quadratic polynomials, but, due to a
lack of symmetry, not to higher degree equations. My interests here are the
geometric and dynamical properties of complex projective maps rather than
numerical estimates.

The search for elegant complex geometry and dynamics continues into
degree five where Aj is the appropriate group, since Ss fails to act on the
sphere. This reduction in a polynomial’s symmetry requires the determination
of the square root of a certain number associated with a given polynomial:
the discriminant. Such root-taking is itself the result of an iteration, namely,
Newton’s method. At the core of the Doyle-McMullen algorithm is a map
with icosahedral symmetry. [Doyle and McMullen 1989] Their solution to the
quintic takes place in three iterative steps each of which involves iteration in
one complex dimension.

An alternative approach is to work with the three-dimensional action of
Ss that derives from the group of permutations of five variables. (Section 2)
The present paper describes maps that can produce quintic solutions that
run as a single iteration in three dimensions.

Pressing on to the sixth-degree leads to the two-dimensional A4g action
of the Valentiner group V. (Section 3) Here, the problem shifts to one of
finding a V-symmetric mapping of CP? from whose attractor one calculates
a given sextic’s root. Providing the overall framework is the 2-dimensional
Ag analogue of the icosahedron.

For a detailed treatment of the geometry and dynamics involved here as
well as how to use both in developing a solution-procedure to the quintic and
sextic see [Crass 2000] and [Crass 1999].

2 The Quintic—S85 Acts in Three Dimensions

The permutation action of S5 on C® does not change the equation
1+ 22+ a3+ 24 +25 =0.

Therefore, it preserves the hyperplane H—sends H to itself—consisting of
points whose coordinates satisfy this equation, that is, add up to zero:

H = {(z1, 2, 23,24, x5) such that z1 + x5 + 23 + 24 + 5 = 0}.

This is a 4-dimensional space which projects to 3-dimensional complex pro-
jective space CP? so that the action of S5 on 7 creates an action of S5 on
CP3. Let G120 denote the group of 120 transformations on CP? correspond-
ing to the permutations of Ss.

For many purposes, the most perspicuous geometric description of the
G120 action employs five coordinates that sum to zero. For example, the point
(1,2,3,4,—10) belongs to . To refer to the corresponding point in projective
space, I will use square brackets: [1,2, 3,4, —10].



2.1 Invariant Polynomials

If you permute the coordinates of the point
(21,72, 73,74, T5),
the expression (also called a polynomial in five variables)
Fy =z] + 25 + 23 + 23 + 3
does not change. Likewise, the expressions

Fy =3 + a3 + 23 + 2§ + 2
4.4 4 4, 4
Fy=a2]4+25 +z5+2x, + 25

5 5 5 5 5
F5:£U1+£U2+£U3+ZU4+[E5

are Ss-invariant. A fundamental fact is that every polynomial that is invari-
ant under the S action on H—permutation of its variables—has a unique
expression in terms of these four polynomials.

2.2 Quadric Surface

The degree-2 invariant defines an Ss-invariant set in CP?: the points whose
coordinates satisfy the equation

F, =0.

(Notice that a significant difference between real and complex spaces appears
here: although there are infinitely many points in #H that satisfy F5 = 0, the
only such point with real number coordinates is (0,0,0,0,0).) This quadric
surface Q consists of two families of complex projective lines £,, £,. (Note
that Q is a complex surface—it has two complex dimensions.) Distinct lines
in the family £, (or £,) do not intersect while, at each point on Q, exactly
one a-line and one b-line intersect.

Furthermore, as a set, each family of lines—called a ruling on Q—has
the geometry of the icosahedron. In addition, a transformation in G2 sends
lines in one ruling to either another line in the same ruling or a line in the
other ruling. The set of transformations of the former type form a subgroup
Geo of G120 that amounts to the rotational symmetries of the icosahedron.

2.3 Special Orbits

The 3-dimensional S5 action comes in both real and complex versions. This
means that Gio¢ acts on R—the real projective 3-space of points whose coor-
dinates are real numbers that sum to zero. Table 1 in APPENDIX A enumer-
ates some special orbits contained in R while Table 2 describes elements of



Q that are fixed by some members of Gy29. For ease of expression, I will refer
to special points (or lines, planes, etc.) in terms of the orbit size: “20-points”
(10-lines, 5-planes).

Corresponding to each special point a = (a1, a9, as, a4, as) is the plane
made of points whose coordinates satisfy the equation

a1 r1 + a2 Ty + a3 x3 + a4 4 + as x5 = 0.
In the case of the 10-points
[1,-1,0,0,0], [1,0,-1,0,0], ..., [0,0,1,0,-1], [0,0,0,1,—1]
there are 10-planes determined by the equations
T1 =2, T1 =23, ..., T3 = Ty, Tg = T5.

Another noteworthy orbit is that of the five coordinate planes consisting of
points one of whose coordinates is zero. The intersection of each such coordi-
nate plane with the quadric @ produces a 1-dimensional set—a sphere—with
the geometry of the octahedron. Some data for special two-dimensional orbits
appear in Table 3.

Finally, a number of special lines appear as intersections of the 5-planes
and 10-planes. Table 4 summarizes the situation.

2.4 Configurations

Some of the geometry that will have dynamical significance shows up in vari-
ous collections of lines. First, the 10-lines whose points have three equal coor-
dinates form a complete graph on the 5-points. Figure 1 illustrates this in two
ways. The pentagon-pentagram figure displays a 5-fold symmetry while the
double pyramid exhibits the 6-fold symmetry of a single 10-line—represented
by the polar axis.

Within each of the icosahedral rulings on Q there are three special line-
orbits. These correspond to the 12 vertices, 20 face-centers, and 30 edge-
midpoints of the icosahedron. Intersections of lines between rulings give spe-
cial point structures.

— Two 12-line Ggg-orbits form six “quadrilaterals” at 24-points.

— Two 20-line Ggp-orbits form ten quadrilaterals at two pairs of 20-points.
(See Figure 2.)

— Two 30-line Ggg-orbits orbits form 15 quadrilaterals at two pairs of 30-
points.



Fig. 1. Configuration of 10-lines and 5-points

2.5 Dynamical Terminology.

The trajectory of a point x under a map f is the set of points obtained by
“applying” f iteratively to xz. A point p is periodic if its trajectory contains
p more than once. A periodic point a in a space X is attracting when the
trajectory of every point near a gets arbitrarily close to a. The basin of
attraction of a is the set of all points attracted to a. Also, the attractor of f
is the set of all attracting points.

2.6 Equivariant Maps

The primary tool to be used in solving the general quintic is a map that
associates points in CP? with points in CP? in a way that respects the action
of the group of transformations Gy59. We want to find a G199 -equivariant map
(or simply Gia9-equivariant) with elegant geometry and reliable dynamics;
this means that its attractor

1) is a single orbit under Gyag
2) has a corresponding basin that “fills up” CP?.

2.7 Basic Maps
The four maps indicated by
fi: [561,56271337134,565] — [ 1
fo: [$1,.’L’2,.’E3,.’E4,.’L’5] — [xf,x%,a:3,a:4,a:5
fs: [$1,.’L’2,.’E3,.’1?4,.’L’5:| — [ :{',xg,xg,xi,xg
fa: [xl,xg,x3,x4,x5] — [x‘f,xg,x3,x4,x5]
are Giap-equivariant. Moreover, by combining these with the invariants
Fy, F3, Fy, F,

we can produce all Gj2p-symmetric maps.
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Fig. 2. Configuration of 40-lines and 20-points on Q. At a 20-point there are two
40-lines—one in each ruling on the quadric. This pair of lines is the intersection of
Q with the tangent plane to Q at the respective 20-point. Also indicated are the
10-lines determined by a pair of antipodal 20-points.



2.8 Families of Equivariants

The Gio9-equivariants form a module over the Gysg-invariants. This means
that for an invariant Fy and equivariant g, of degrees £ and m, the product

Fygm

is an equivariant of degree £+ m. When looking for a map in a certain degree
with special geometric or dynamical properties, my approach is to express
the entire family of equivariants for that degree and, by manipulation of
parameters, locate a subfamily and eventually a single map with interesting
behavior.

2.9 Quadric-preserving Maps

The rich geometry of the quadric Q provides an intriguing setting for dynam-
ical exploration. Are there Ss-symmetric maps that send Q to itself? If so,
how do they behave on and off Q7 I will describe two species of such maps:
one associated with the icosahedron and the other with the octahedron.

Maps that Preserve Icosahedral Rulings Were a Gys9-equivariant to
preserve the rulings on Q, its restriction to either ruling £, or £, would ex-
press itself in terms of the basic equivariants under the one-dimensional icosa-
hedral action. Maps of this kind occur in degrees 11, 19, and 29. [Doyle and McMullen 1989,
p. 166] Consequently, the 20-parameter family of 11-maps comes under scrutiny:
fii=(F +asF; Fs + asFs Fy+ s Fi Fi+ as Fa Fi + ag Fo Fs Fs + a7 F) f1

+ (as F3 Fs + a9 Fs + ono Fo F3 Fy + a1 Fs Fs + o Fy Fs)fo

+ (13 Fy + a1 Fs Fy + ons F3 Fiy 4 ais Fi + anr Fi Fs) fs

+ (a1s F22 Fs + a9 F3 Fy + aso F» F5) fa.

Using the parameters a; through asg to satisfy the demands of the 1-
dimensional 11-map with icosahedral symmetry, we obtain a 13-parameter
family of ruling-preserving maps

g1 =4(16a1 F5 + 16z F; F; + 16 as Fy F4+ 67 F5 Fy
+ 16 as F2F42 + 16 ag I F3 F5 +45F52) f1
+ 4 (160(8 F23 F3 + ].GF:;? + 16 avio Fs F3 F4 + 16 a1 F22 Fs — 135 Fy F5) fz
+ (64013 Fy +64a1a Fo Fy + 6415 F3 Fy + 405 Fy — 720 F3 F5) fs
+ 4 (16 Q18 F22 F3 — 225 F3 Fy + 16 avag Fo F5) f4.

Restricted to a ruling, the dynamics of each g;; is well-understood. The

20-lines (under Gio0) are exchanged in pairs. (Recall that 20-lines in Q are

dodecahedral vertices in £, or £,.) Moreover, almost every line in the ruling
belongs to the basin of one of the ten antipodal pairs of the superattracting



set of 20-lines. (See Figure 5 in APPENDIX B.) Thus, for almost every point x
on @, there is an“antipodal” pair of intersections between 20-lines in different
rulings which the trajectory of x approaches.

As a result, the global behavior of each g;; depends on its dynamics off
Q. Should the quadric attract or repel? If @) were attracting, then the 400
intersections of 20-lines in different rulings would attract in all directions.
One way to arrange for this is to force these points to be attracting in the
off-quadric direction. However, this situation does not conform to the model
of reliable dynamics. The attractor would not be a single Gy29-orbit of points,
though it might be the set of intersections of a single line-orbit. I have not
explored the case of a repelling quadric. Such a situation would arise if inter-
sections of 20-lines were attracting in the two quadric directions but repelling
in the off-quadric direction.

An Octahedral Map Since the orbit of the five coordinate planes has
fundamental geometric significance, a map that preserves these sets might
exhibit interesting dynamics. Arranging for this spends four of the twenty
parameters of the family fi;.

The intersection of a 5-plane and the quadric Q is a conic (sphere) with
the Sy symmetry of the octahedron. One of the special equivariants for the
octahedral action on CP' is a degree-5 map that attracts almost every point
to the eight face-centers— vertices of the dual cube. Geometrically, the map
stretches each face F of the cube symmetrically over the five faces in the
complement of the face opposite F. As a face stretches, it makes a half-
turn so that the vertices and edges land on their antipodes. (See Figure 6
in ApPENDIX B.) Under G99, antipodal pairs of octahedral face-centers are
pairs of 20-points.

The idea is to find a reliable map that sends @ to itself and behaves like
the special 5-map on each of the octahedral conics. Such a map would attract
points on Q to the 20-points. We also want the 20-points to be attracting off
Q. In degree five there are too few parameters for the purpose. However, the
11-maps provide enough freedom to arrange for elegant geometry.

Each of the 10-lines two of whose coordinates are zero contains a pair of
antipodal 20-points. A map that

1) preserves these lines,
2) attracts almost every point on the line to the 20-points, and
3) superattracts in the directions off the line

would act as a “superattracting pipe” to the quadric. Expenditure of the
remaining parameters purchases a map hj; with these properties.

It happens that hy; also preserves R—the Ss-symmetric space of points
whose coordinates are real numbers—as well as the 2-dimensional intersec-
tions of R with the five coordinate planes and the ten planes whose points
have two equal coordinates. In the former case there are four intersections of



the 2-dimensional space with the superattracting 10-lines while in the latter
there is a single such intersection. Each such intersection, is a real projec-
tive line as well as an “equatorial slice” of the associated complex projective
line—a sphere. When restricted to such a slice, hy; acts chaotically, mean-
ing that the trajectory of most of the circle’s points gets arbitrarily close to
every point on the circle. A basin portrait for the 5-plane reveals no basins
other than those of the four chaotically attracting 10-lines. (See Figure 9.)
The dynamics on the “real part” of the 10-plane shows, in addition to the
chaotic line-attractor, three additional basins at 30-points. (See Figure 10.)
A 30-point belongs to a 10-line, which intersects the 10-plane transversely.
Thus, near a 30-point, but off the 10-plane, there is only the “pipe-basin” of
the 20-points. Hence, the basins of a 30-point are strictly 2-dimensional.

2.10 A Special Map in Degree Six

In the configuration of 10-lines each 5-point lies at the intersection of four
lines. (See Section 2.4.) Moreover, these are the only intersections of 10-lines.
To take advantage of this structure, a map could have superattracting pipes
along the 10-lines and, thereby, have 3-dimensional basins of attraction at
the 5-points.

The family of 6-maps has six free parameters. I takes four parameters
to obtain maps for which the 10-lines are superattracting in the “off-line”
directions. For the remaining two, we get a map fg whose restriction to a
10-line is

z — 2*

when expressed in coordinates where the 5-points on the respective 10-line
are 0 and oo. Recalling that a 10-line is a sphere, such a map attracts all
points in the northern hemisphere to the 5-point at oo (the north pole) and
attracts all points in the southern hemisphere to the 5-point at 0 (the south
pole). The equatorial circle—a real projective line—maps to itself chaotically.

Of necessity, f¢ preserves each Sz-symmetric 10-plane whose points have
two equal coordinates. To be specific, consider such a 10-plane £ whose points
we can describe by

1 1
[x,y,z,—§(m+y+z),—§(m+y+z)]

The 10-point [2,2,2, —3, —3] and 5-points
[_4: ]-7 1: ]-7 1]7 [17 _47 1: ]-7 1]7 [17 1: _4: ]-7 1]

form Ss-orbits on £. Furthermore, fs preserves R—the Ss-symmetric RP?.
We can get a picture of the map’s restricted dynamics by plotting basins of
attraction on the RP? intersection of £ and R. (See Figures 11 through 14
in ApPENDIX B.) The plot shows attraction to the 5-points and the 10-point.
However, the 10-point lies on the “equator” of the 10-line whose points look



like [z, z,2z,y,—3x — y]. Here, fg repels in the off-plane direction. Thus, the
basin of a 10-point is 2-dimensional. No other attracting sets appear.

A 15-line (such as [z, z,y,y, —2 (z+y)]) contains one 5-point [1,1,1,1, —4],
one 15-point [1,1, —1, —1, 0], and two 10-points [2,2, -3, -3, 2], [-3,-3,2,2,2].
In coordinates where the 5-point is 0, the 15-point is co, and the 10-points
are *+1 the map restricts to

48 2°
—3— 224352441726
(Figures 15 and 16 display portraits.)

Another distinction for fg is its action on a 15-line—say [z, —z,y, —y, 0]—
which maps to the 15-line [z,z,y,y, —2 (x + y)]. In fact, this is what led me
to 6-maps each of which send the 10-point (such as [0,0,0,1,—1]) to its
associated 10-point [2,2,2,-3.-3].

Finally, f¢ preserves a certain 3-dimensional real projective space that is
associated with the group of transformations that fix a 5-point. This RP?
intersects two 10-planes in an RP?—which you can think of as a sphere—
that has the symmetry of a double rectangular pyramid. In addition to the
5-point this RP? contains three 10-points as well as the RP! through two
of the 10-points. Since this line is an equatorial slice through a 10-line where
the map looks like

z—

z — 2%,

f6 behaves chaotically along the line while attracting points off the line. (See
Figure 17 for a basin portrait.)

3 The Sextic—Ag Acts in Two Dimensions

3.1 Basics of Ag and Valentiner’s Group

Inside the alternating group A are twelve versions of the alternating group
As. These twelve subgroups decompose into two systems of six:

1) the permutations that leave one thing unmoved
2) the permutations of the six pairs of antipodal icosahedral vertices result-
ing from the icosahedron’s rotational symmetries.

The group Ag can act on these subgroups by permuting each of the two
systems individually. A given Ay subgroup fixes itself as a set and permutes
the five companion subgroups in its system according to the rotational icosa-
hedral group’s action on the five cubes found in the icosahedron. Meanwhile,
the other system of six A5 subgroups undergo the permutations of the six
pairs of antipodal vertices. Consequently, the intersection of two 45 sub-
groups in the same system is isomorphic to the group A;—the tetrahedral
rotations—while two in different systems give a dihedral group Ds—the sym-
metries of a double pentagonal pyramid.



In the late nineteenth century, Valentiner discovered a group—call it V—
of 360 transformations of 2-dimensional complex projective space that has
the same structure as the group of permutations Ag. To solve the sextic
equation, we must find a map on CP? that is symmetric with respect to V.

3.2 Valentiner Geometry

Icosahedral Conics The A5 subgroups of Ag correspond to subgroups of
V. Each of the As subgroups preserve a respective 1-dimensional conic—a
sphere—which thereby has the geometry of the icosahedron. The group V
permutes these two sets of six icosahedra in the same way as Ag permutes
its two systems of A5 subgroups.

Special Orbits Some of the special icosahedral points on a conic occur at
its intersections with the other 11 conics. There are two cases.

— Two conics in the same system intersect in four tetrahedral points; this
gives the 20 icosahedral face-centers on a given conic. The overall result
is a 60 point V-orbit for each system of conics.

— Two conics in different systems intersect in two points. This gives six
pairs of antipodal icosahedral vertices on each conic. These total to a
V-orbit consisting of 72 = 6 - 12 points. Figure 3 illustrates the situation.

As for other special orbits, each of the 45 transpositions in Ag corresponds
to a transformation 7" in V that fixes every point on a line associated with 7.
In addition, T fixes a point that is mot on its associated line. These give V-
orbits of 45 lines and 45 points. An equivariant map typically preserves each
of these lines and points; however, as we will see (Section 3.4), something
quite different can occur. The typical points on a 45-line lie in four-point
orbits and, overall, provide V-orbits of size 180. Other special orbits occur at
the intersections of the 45-lines:

— 36-points on five of the 45-lines
— 45-points on four of the 45-lines
— 60-points on three of the 45-lines.

The 72-points have the distinction of being the only special V-orbit that do
not belong to the 45-lines.

An Additional Symmetry The one-dimensional icosahedral group Geo
acts on two sets of five tetrahedra each of which corresponds to a quadruple
of face-centers on the icosahedron. However, no element of the group sends
the tetrahedra of one set to those of the other. Such an exchange occurs by
means of orientation-reversing transformations. Some of these are reflections
through the 15 great circles of reflective icosahedral symmetry; the remaining
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Fig. 3. The triangle of one 36-point and two 72-points.

45 are the various “odd” compositions of these 15 basic reflections—e.g., the
map that sends a point to its antipode. Extending the orientation-preserving
group Ggo by such an orientation-reversing transformation produces the group
of all 120 symmetries of the icosahedron.

The Valentiner analogues of the tetrahedra are the two systems of con-
ics. There are orientation-reversing transformations of CP? that exchange
the systems of conics. By taking all combinations of such a transformation
with the elements in the group V, we get a new group consisting of 720
symmetries of the Valentiner structure. In analogy to the 15 great circle re-
flections that produce all 120 symmetries of the icosahedron, there are 36
orientation-reversing transformations that combine to make the 720 Valen-
tiner symmetries. Each of these 36 transformations fixes every point of an
associated real-projective plane. (Figure 4 illustrates a geometric construc-
tion for these planes.) These 36 planes stand in analogy to the 15 great
circles—real projective lines—of icosahedral reflections. A map that respects
all 720 of the Valentiner symmetries must send each of these planes to it-
self. This circumstance allows us to make pictures of such a map’s dynamical
behavior.

3.3 Invariant Polynomials and Equivariant Maps

Every polynomial that is invariant under the Valentiner group can be ex-
pressed as a combination of four basic invariants. We can obtain any V-
equivariant map from combining these invariants and their derivatives (in
the sense of calculus). Again, the idea is to employ a palette of parameters
in designing a geometrically elegant map.

3.4 The lowest degree equivariant—a case of inelegant dynamics

In degree 16 we find the map of least degree with Valentiner symmetry. This
map has the property that it smashes a 45-line down to its associated 45-
point. Furthermore, it “blows-up” a 45-point to its companion 45-line. This
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Fig. 4. A geometric interpretation of transformations that exchange conics in dif-
ferent systems—indicated by the pair of points.

means that the map spreads points near the 45-point over the 45-line. The
basin portrait (Figure 18) fails to reveal the geometric elegance for which we
seek.

3.5 A Special Icosahedral Map of Degree 19

Associated with the icosahedron is a degree-19 map that takes each of the
20 faces and stretches it around the icosahedron omitting the opposite face.
When iterated, this icosahedral equivariant attracts almost any point of the
icosahedron to one of the six pairs of antipodal vertices. (See Figure 19.)

In the higher dimensional case of the Valentiner group, there is a 19-map
hy9 that send each of the 12 icosahedral conics to itself. This means that on
a conic hig is the map described above, so that we understand much of its
dynamics there. Recall that the vertices of the icosahedral conics make up
the 72 point V-orbit. It happens that away from the conic, these points are
also attracting.

Moreover, hig has the additional symmetries of the transformations that
exchange the systems of conics. Therefore, it preserves each of the 36 real pro-
jective planes associated with these transformations. These spaces look very
much like familiar two-dimensional planes. The map’s dynamical behavior on
such a plane appears in Figures 20 through 24.



3.6 A Special Dodecahedral Map of Degree 11

There is another map that preserves conics, though this one is of a kind dif-
ferent from that of the 19-map. In this case, we use complex conjugation: an
operation on the complex numbers that reflects a point through the axis of
real numbers in the plane of complex numbers. This is the sort of orientation-
reversing process that exchanges the two sets of five tetrahedra in the icosa-
hedron. We can also apply it to the coordinates of points in 2-dimensional
space; this type of operation exchanges the two systems of conics.

For each system of conics, but not for both, there is an orientation-
reversing map that preserves the six conics individually. When restricted
to one of the conics, the map’s geometry is to stretch each dodecahedral face
onto its complement—the sphere minus the face—while fixing the vertices
and edges and sending the face-center to its antipode. You can imagine push-
ing the face inside the dodecahedron spreading it out symmetrically onto
the other 11 faces. This defines an 11-map expressed in complex conjugated
coordinates. When iterated, the 12 fixed-points at the vertices attract almost
all points on the sphere. Since two conics in one system intersect transversely
at the vertices (60-points), these points are attracting in all directions. I plan
to study this map and, in a future paper, give a detailed description of its
behavior.

A Special Orbit Data

For ease of reference, the following tables provide descriptions of the special
G120 orbits associated with the maps discussed in the text.

Table 1. Special points on the Ss-symmetric real projective plane

Number of points|Representative point
5 [—4,1,1,1,1]
10 [0,0,0,1,—1]
10 [2,2,2, —3,—3]
15 [0,1,1,—1,—1]
20 [0,-3,1,1,1]
30 [0,0,1,1,—2]




Table 2. Special points on the quadric Q

Size Representative Remarks
20 [0,0,1,ws,w3] antipodal pair of eight octahedral
[0,0,1, w3, ws) face-centers on intersections
of @ and a coordinate plane
ws = 27 /3

20 |[1,1,1,0,a] [1,1,1,a, a)|a = =2+Y15:

24 1, ws, w?, wi, wi] ws = 2™ /5
30 [0,1,4,—1, —14] antipodal pair of six octahedral
[0,1,—4,—1,1] vertices on intersections of

@ and a coordinate plane

_ =245
30 [1:17@:@7_2(14_@)] IB_%
[1717/87ﬂ7_2(1 ﬂ)]
60 [0,1,1,~,7] antipodal pair of 12 octahedral
[0,1,1,7, edge-midpoints on intersections of

@ and a coordinate plane
y=—1+2i

Table 3. Special orbits of complex projective planes

Size| Algebraic definition | Corresponding point

5 z1=0,...,25=0 [—4,1,1,1,1], ..., [1,1,1,1,—4]
10| zi=m9, ..., za=as5 | [1,—1,0,0,0], ..., [0,0,0,1,—1]
10 |21 = —29, ..., z4 = —25|[—3,-3,2,2,2], ..., [2,2,2,—3, —3]

Table 4. Special orbits of complex projective lines

Size Description
10 [$7y:_($+y):070]

10 [$,$,$,y, _3$_y]
15 [$ﬂ$:y:y7_2($+y)]
15 [$7 —T,Y, Y, 0]

30 [$7$7y7_2$_yﬂ0]




B Gallery of Basin Portraits

The basin plots that follow are productions of the program Dynamics and
Dynamics 2 that ran respecctively on a Silicon Graphics Indigo-2 and a
Dell Dimension XPS with a Pentium II processor. Its BA and BAS rou-
tines produced the images. (See the manuals [Nusse and Yorke 1994] and
[Nusse and Yorke 1998].) Each procedure divides the screen into a grid of
cells and then colors each cell according to which attracting point its trajec-
tory approaches. If it finds no such attractor after 60 iterations, the cell is
black. The BA algorithm finds the attractor whereas BAS requires the user
to specify a candidate attracting set of points. Each portrait exhibits the
highest resolution available—a 720 x 720 grid.

Maps with S5 Symmetry

Figure 5: The dodecahedral 11-map. Each of the ten pairs of antipodal
dodecahedral vertices—black dots—is a period-2 superattractor. Their basins
fill up CP*. (Bear in mind that points in the space of this plot correspond
to lines in either ruling on the quadric surface Q.)

Figure 6 This plot indicates the behavior of hy; restricted to an Sy-symmetric
conic—the intersection of a coordinate plane and the quadric Q. The four
pairs of antipodal vertices of the cube are period-2 superattracting 20-points
whose basins fill up the conic.

Figures 7 and 8 These show the behavior of the octahedral map hq; on
a 15-line and a 30-line respectively. In the former case, the superattracting
points at 0 and oo are a pair of 30-points on Q that h;; exchanges. A pair
of fixed 10-points accounts for the remaining two basins. At each of these
attracting points, the map repels in at least one direction away from the line.

On the 30-line, the superattracting points at 0 and oo are a pair of 60-
points (antipodal edge-midpoints) on an octahedral conic; the map exchanges
the two points. The remaining two basins belong to a pair of 20-points on R.
As before, the map repels in at least one direction away from the line at each
of these attracting points.

Figures 9 and 10 We see the restriction of A1 to an RP? with S symmetry
and an RP? with S; symmetry. Each case involves a chaotic attractor. In the
former, the attractor consists of the four RP?! intersections of R, a coordinate
plane, and four of the 10-lines with two zero coordinates. The six intersections
of 10-lines occur at 10-points with three zero coordinates. (In the picture, two
of these intersections occur on the line at infinity.) The pictured “lines” are
the images of small circles centered along the edges of the inner square. This



graphical technique specifically relies on the chaotic and attracting behavior
of hi; along each line.

In the S3-symmetric plane, the attracting line is the intersection of R,
a 10-plane with two zero coordinates and the 10-line at infinity—the light
gray basin. The three “attracting” 30-points—they are blowing up—are the
vertices of an equilateral triangle.

The remaining images illustrate the dynamics of the 6-map fs.

Figures 11 through 14 We see the restriction to the RP? determined
by the intersection of R and a 10-plane with two equal coordinates. Since
this plane is S3-symmetric, we select the coordinates so that the three 5-
points are vertices of an equilateral triangle centered at (0,0). Three of the
superattracting pipes contain this triangle. Indeed, as Figure 11 shows, the
map sends the circle of radius % centered at (0,0) nearly to this triangle. The
attractor at (0,0) is the 1-point orbit in the 10-plane—overall, a 10-point (of
the type [—3,—3,2,2,2]). In the direction away from the plane, fg repels at
this site along a superattracting pipe. The three “spokes” at basin boundaries
are pieces of 15-lines each of which passes through a secondary basin that
contains a point that maps to the central 10-point.

Figure 12 This shows hi;’s critical set—where the map folds the plane
over—superimposed on the blurry basin portrait. The critical contour is a
Mathematica plot. The curve crosses itself at the 5-points. All but six critical
points appear to belong to the basin of either a 5-point or the central 10-
point. The six exceptions lie on the 15-lines at basin boundaries. If this is so,
then there is no other attracting site.

Figures 15 and 16 We see the map restricted to a 15-line that maps to
itself. The coordinates of this image place the single 5-point at 0 and the two
fixed superattracting 10-points at +1. At the latter points, the map repels in
all directions off the line. Figure 16 approximately shows the boxed region.

Figure 17 The space is the RP? intersection of an S;-invariant RP® and
a 10-plane with two equal coordinates. The RP' intersection of the RP?
and the associated 10-line with three equal coordinates is the central vertical
axis. By plotting the trajectory of one of its generic points, this line reveals
itself as a chaotic attractor; the plot shows roughly 20, 000 iterates. The map
attracts at (1,0) and (—1,0)—a 5-point and 10-point respectively.



o

Fig. 5. Dynamics of a ruling-preserving 11-map on each of the quadric’s rulings



Fig. 6. Four basins of attraction for the octahedral 5-map



Fig. 7. Three basins of attraction for hi; restricted to a 15-line



Fig. 8. Three basins of attraction for hi; restricted to a 30-line



Fig. 9. Chaotic attractors for hi1 on an RP? with S symmetry



Fig. 10. Chaotic attractor for h11 on an RP? with S3 symmetry



Fig. 11. Four basins of attraction for fs restricted to an RP?



Fig. 12. Critical set of fs restricted to an RP?



Fig. 13. Detail of the left cusp of central basins in Figure 11



Fig. 14. Detail of the left cusp in Figure 13



Fig. 15. Three basins of attraction for fe restricted to a 15-line



Fig. 16. Magnified view of the boxed region in Figure 15



Fig. 17. Chaotic attractor for fs on an RP?



Maps with Ag Symmetry

Figure 18 When “restricted” to a 45-line, the degree-16 map “mostly” con-
verges to one of the 45-points on the line. Does this occur for almost every
point on the line? Do the black specks consist of points whose trajectories
fail to converge to one of the four attracting 45-points that lie in the large
“central” basins? The BAS algorithm checked 60 iterates before concluding
that a trajectory did not converge.

Figure 19 The degree-19 map with icosahedral symmetry attracts almost
all points in the sphere to an antipodal pair of vertices. Each of the six colors
corresponds to such a pair and the three large basins each contain a vertex.
For the conic-preserving hyg, the basin plot on each conic looks like this one.
Moreover, each basin is the 1-dimensional intersection of a 2-dimensional
basin in CP2.

Figure 20 The image shows the behavior of k19 on one of the 36 real projec-
tive planes determined by the basic conic-exchanging transformations. The
large “radial” basins are immediate, that is, each contains one of the 72-points
and come in pairs as do the period-2 attractors. Notice the repelling behavior
along the 45-lines and particularly at their intersection in the 36-point (0, 0).

Figure 21 Shown here are trajectories, colored according to their destina-
tions, of the points in the vertical strip on the left. Many of the points in
the strip map inside the “hazy pentagon” whose vertices lie on the 45-lines—
the inner “star” is nearly filled. “Circumscribing” this pentagon is the outer
star-like piece of the critical set shown in Figure 24. Furthermore, the pen-
tagon seems to be the image of the inner pentagonal oval. Accordingly, the
map folds the plane along the pentagon’s edges just outside of which the 72-
points make their presence seen in the dense streaks. Compare this pattern
of streaks to that of the 72-lines shown in Figure 22. Figure 23 illustrates this
local “squeezing” at a 72-point.

Figure 22 The lines tangent to a conic at the 72-points form an orbit of 72
lines. For any one of the 36 planes of reflection associated with transforma-
tions that exchange the systems of conics—call such a plane R, there are five
of the 72-lines that intersect R in a real projective line. The picture shows
their configuration in the plane of Figures 20 and 21. Each pair receives a
single color according to the scheme of the basin plots. A given pair passes
through the associated pair of 72-points; they intersect in the corresponding
repelling and fixed 36-point.



Figure 23 The green horizontal line corresponds to the RP" intersection of
the reflection plane R and the 36-line passing through the pair of green 72-
points from the basin plot. The dark curve is where hig sends the line. Sitting
at the sharp cusps are the 72-points which the map exchanges. As indicated
in the caption to Figure 21, the line folds over at these critical points. The
upper two sharp turns are not critical values; they occur where the line passes
through the yellow and red “streak” that approximate 72-lines.

Figure 24 Here is a Mathematica contour plot on R of the sixth degree
curve—the set of points in R that satisfy the equation Fgz = 0. The critical
set of hyg in CP? meets R in this curve. The superattracting 72-points are
the inflection points.

Fig. 18. Dynamics of the 16-map



Fig. 19. Icosahedral dynamics of the 19-map



Dynamics of hig on a special real projective plane
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Fig. 21. Dynamics of hig on a special real projective plane
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Fig. 22. Configuration of 72-lines

-0.2
-0.4

N\

0.6

Fig. 23. Image of a 36-line under hig
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Fig. 24. Critical set of hig
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