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Abstract. The work of an engraver is shown through the presentation of three 
types of engravings concerning minimal surfaces, closed surfaces without 
singularities, and bi-periodic functions. 

 
1 Introduction: The Engraver's Job. 
I make engravings on copper. From the following images, one can 
follow some of the many steps that end in the production of an 
image from the engraving. In this case it is an engraving of an olive 
tree that could be used as an emblem for Provence, the region where 
I live and which I try to honor with some of my works. 
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                                                Fig. 3.          

   
 
          Fig. 4.                                 Fig. 5.                                          Fig. 6. 
 

Engraving 
Engraving: The engraving method consists of cutting incisions on a 
copper plate with a kind of chisel called a burin. The finished 
engraving is then printed using the intaglio method. That is, the 
entire surface of the plate is coated with ink and, after wiping, the 
ink remains in the incised markings. The printing press consists of 
two assembled steel cylinders, one atop the other. The inked copper 
plate is then put on a steel plate on which there is placed a wet piece 
of Arches paper and a felt cloth; all of which is then passed between 
the cylinders. The result gives a light relief of the incisions on the 
paper. 
 
My main inspiration, however, is different. It is in mathematics that 
helped me discover the meaning of models shown at the Institute 
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Henri Poincaré, and it reminds me on the time of my youth, at the 
Palais de la Découverte (see the article by Francis Apéry). If I take 
each of my visits to our capital to make prints of the rich Parisian 
scenery, it is in Provence that I compose my engravings of 
mathematics. I will now give an overview on three themes, namely, 
minimal surfaces, closed surfaces without singularity, and bi-
periodic functions. 
 
2. Minimal Surfaces  
 
I started by studying certain surfaces of 3rd and 4th degree, given by 
simple equations that I could solve easily. I executed then lines 
thanks to the Cavaliere perspective, drawing carefully each of their 
remarkable curves. When data processing appeared, I programmed 
myself in BASIC to compute these surfaces starting from their 
parametric equations – today, I use standard software solutions. It 
was enough for me to choose the contour and the visual angle of my 
surfaces. Starting from a screen printing, I obtained a copy of a basis 
model being used for the future engraving. 
 
I was interested in a family of surfaces which, since the 19th 
century, bear the name of minimal surfaces. The German school was 
very active in this field. Weierstraß in 1866 derived a representation 
formula for this particular family of surfaces: 
 

x = �(1-z²)R(z)dz    y = �i(1+z²)R(z)dz    z = �2zR(z)dz (1) 
 
R (z) is a function of a complex variable z = u + i v (i is the square 
root of -1), which determines the specific minimal surface. Taking 
the real part of x, y, and z gives the coordinate functions of the 
surface in the Euclidean 3-space which we also denote with x, y z. 
 
 2.1 Enneper Surface 
The first minimal surface I studied with these formulas is that of 
Enneper (1863) : 
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Fig. 7.  Enneper surface 
 

Here R (z) = 3, from which one deduces, after integration  
 

x = 3z - z3    y = i(3z + z3)    z = 3z². 
Then after taking the real part we obtain 

x = 3u + 3uv ²- u3, y = -(3v + 3u²v  - v3), z = 3u² - 3v². 
 
2.2 Formulas of Monge and Weierstraß  
Thereafter, I used a generalized formula to represent minimal 
surfaces (H²=z²R and F²=R): 
 

x = �(F ²- H²)d(z)   y = �i(F² + H²)d(z)   z = �2FHd(z) (1’) 
 
All these formulas make it possible to compute minimal surfaces 
starting from an isometric network. The network traced on a surface 
depends on function “z”. :  

- If one takes z = u + iv, the conformal representation on the 
plane (since complex functions preserve angles) maps to a square-
like grid on the minimal surface. 

- To have a surface bordered by one or more closed curves, 
one will take ez = eu (cos v + i sin v), the conformal representation, 
here, will be made of concentric circles and radiant lines. 
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One can also use Monge‘s formula that one can, for example, 
deduce from the Weierstraß equations (1) or (1 '):  
 

dx ² + dy ² + dz ² = 0. 
 

This formula is in particular satisfied by the following functions: 
 

x = f (z),   y = g(z),   z = �i Ö(f(z)² + g(z)²) dz. 
 
The data of the functions F and G implies obviously x and y, and in 
general with some difficulty z, since computing z requires taking a 
square root. Since f and g are functions of a complex variable z, they 
define points (x, y) of this plane along a curve. The writing of z, 
where f and g appear by their square, implies the presence of 
symmetry at least. 
 
2.3 Catalan Surface 
Here is an example established from the cycloid curve in the real 
plane, which is studied since 1501 (cf: 
http://www.mathcurve.com/courbes2d/cycloid/cycloid.shtml). The 
formula of the cycloid curve is:  
 

x = u – sin u,   y = cos u  
 

After replacement of u by z, one obtains the value of z easily:  
 

x = z – sin z 
y = cos z 

z = 4i sin z/2 
 
The developed equation gives us:  
 

x = u - sin u cosh v 
y = cos u cosh v 

z = 4 sin u/2 sinh v/2 
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The parameters u and v being variable, we obtain the minimal 
surface of Catalan (1814-1894): 

 

 
 

Fig. 8. Catalan’s minimal surface  
 
2.4 Jeener Surface 
There exists many other simply plane curves from which one can 
obtain minimal surfaces. For example, starting from the planar spiral 
equation: 
 

x = emt cost,  y = emt sin t 
 
one builds the spiral minimal surface:  
 

x = emt cost 
y = emt sin t 

z = i Ö((1 + m²)/m) 
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Fig. 9. Minimal surface «à la Chouette» 
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Fig. 10. Spiral minimal surfaces  
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If, initially, I chose functions allowing me to trace traditional 
remarkable surfaces, I then left free course to my imagination. Here 
is an example:  
 

x = um cos mv – (m/(m + 2n) um+2n ) cos(m+ 2n)v 
y = um sin mv + (m/(m + 2n) um+2n )sin(m + 2n)v 

z = (2mum+n /(m + n))cos(m + n)v 
 
These surfaces resemble flowers determined by constants m and n. 
 

 

 
 

Fig. 11. Floraison 
 
 
2.5 Minimal Surface with a Family of Parabolas 
This surface, which comprises a family of parabolas, was studied by 
Enneper in 1882. It is determined by:  
 

R(z) = ia(z² - 1)/z3 – i b/2z² 
 

The equation is thus: 
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x = a u - a sin u ch v + b sin u/2 sh v/2 
y = a - a cos u ch v + b cos u/2 sh v/2 

z =  4 a sin u/2 sh v/2 – b u/2 
 
While making a = 1 and b = 0 one finds Catalan’s surface, and for a 
= 0 and b = 1 the helicoid with planar axis.  
 
2.6 Bonnet Surface 
Within the framework of the general research on minimal surfaces 
having planar principal lines of curvature, Ossian Bonnet discovers a 
surface whose equation is:  
 

x = u cos m +sin u ch v 
y = sin m cos u ch v 

z = v – cos m cos u ch v 
 
If one takes m =  p/2, one finds the catenoid. 
 
 

 

 

Fig. 12.  Bonnet minimal surface  
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2.7 Henneberg Surface 
Henneberg discovers the first one-sided resp. unilateral minimal 
surface, whose equation is: 
 

x = 3 cos u sh v – cos 3u sh 3v 

y = 3 sin u sh v + sin 3u sh 3v 

z = 3 cos 2u ch 2v 
 

 
 

Fig. 13. Henneberg surface  
 
3. Topology of Closed Surfaces without Singularities  
 
3.1 The first closed unilateral surface, the famous Klein bottle, was 
discovered by Felix Klein in 1882. The Klein bottle can be 
generalized to a surface having “n” bottles suing the following 
general equation: 
 

W = cos((m+1)u+p/(m+1))+3/2 
x = m cos u + cos mu - (m+1)/2m W sin (m-1)u/2 cos v 
y = m sin u – sin mu - (m+1)/2m W cos (m-1)u/2 cos v 

z = W sin v 




















